Home >> Research Programs >> Nuclear Energy

Molten Salt Reactors (MSRs)

Molten Salt Reactors (MSRs) are liquid-fueled reactors that can be used for production of electricity, actinide burning, production of hydrogen, and production of fissile fuels.

Electricity production and waste burndown are envisioned as the primary missions for the MSR. Fissile, fertile, and fission isotopes are dissolved in a high-temperature molten fluoride salt with a very high boiling point (1,400 C) that is both the reactor fuel and the coolant. The near-atmospheric-pressure molten fuel salt flows through the reactor core. The traditional MSR designs have a graphite core that results in a thermal to epithermal neutron spectrum.

In the core, fission occurs within the flowing fuel salt that is heated to ~700ºC, which then flows into a primary heat exchanger where the heat is transferred to a secondary molten salt coolant. The fuel salt then flows back to the reactor core. The clean salt in the secondary heat transport system transfers the heat from the primary heat exchanger to a high-temperature Brayton cycle that converts the heat to electricity. The Brayton cycle (with or without a steam bottoming cycle) may use either nitrogen or helium as a working gas.

Page Contact Information:

Department of energy

DOE Office of Nuclear Energy
DOE-Idaho Office