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RISMC Framework and the Management of

Materials Degradation
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Complementarity of RISMC and NRC Proactive

Management of Materials Degradation (PMMD) Program
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Complementarity of RISMC and NRC Proactive

Management of Materials Degradation (PMMD) Program
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Summary: RISMC as Decision Framework for:

NPP Materials Management

» Physics-driven models of component/materials reliability
m Multiple-mechanism materials degradation models
m Monitoring, flaw detection, and intervention strategies modeled

» R7 environment predicts lifetime physical stressors on
materials

m Key uncertainties

m Feedback of materials/component performance on physical
environment

» RISMC framework relates materials performance to long-
term safety margins
m Safety margin acceptability

m Cost-benefit analysis of proactive management of materials
degradation
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RISMC: Initial Physics-Based Passives Multi-

State Model — Stress Corrosion Cracking
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Initial Physics Models — Crack Initiation

» Weibull model of crack initiation
» P(t) =1 - exp[- (t/1)°]
» tis time from last repair
» T and b are physics-based Weibull parameters

T :‘lﬂ“s‘%&

» O = stress factor, Q = activation energy, T= absolute temperature
» EPRITR-104030; NUREG/CR-6737

» Effective state transition rate to crack initiation:

b, = f{]:r,r‘fr} (/1)L 11 (v, ) dr.db.
» [1represents aleatory probability density



Initial Physics Models — Crack Growth

» Crack growth
» EPRI MRP-115 model

im @ fanoy forianed d ﬂ'[-(%:I rmt- n‘“’*-l}]

» Relates rate of crack growth to crack tip stress intensity factor(K), thermal activation energy
for crack growth (Q), operating temperature (T), and fitting factors

» Effective state transition rate to radial macro-crack formation:

(ap/u). (). By
P‘g(l - fane .dﬁ}+Pb(:l - fan® .da}

ap , ac = threshold macro-crack lengths (D=radial, C=circumferential), u is time from
crack initiation, Py , P = probabilities of given crack morphologies, and I = aleatory
distribution over crack growth rate

ﬂ13=
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» Simplified models of other phenomenology
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Solution Algorithms

» We have stochastic, time-inhomogeneous transition rates
m Not a Markov process
® Not a semi-Markov process

» Use of proportional hazards methodology
m Embed stochastic non-Markov process in stochastic Markov process

» State-space enrichment

m Number of states in enriched space = original number (6) x number of discrete
time steps (6 months per step)

® Process becomes a Markov chain — solved numerically

» Solutions re-integrated in original 6-state space
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Results — Component Rupture Rates
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NRC PMMD: Degradation Modes

Abbreviation

Degradation Mechanism

BAC Boric Acid Corrosion

CREEP Thermal Creep

CREV Crevice Corrosion (including denting)

DEBOND De-bonding

EC Erosion Corrosion Including Steam Cutting and Cavitation

FAC Flow-accelerated Corrosion

FAT Fatigue (corrosion/thermal/mechanical)

FR Reduction of Fracture Resistance

GALV Galvanic Corrosion

GC General Corrosion

IC Irradiation Creep

MIC Microbially Induced Corrosion

PIT Pitting Corrosion

SCC Stress Corrosion Cracking (intergranular, transgranular, irradiation-
assisted, strain-induced, hydrogen-embrittlement) and Intergranular
Attack

SW Swelling

WEAR Fretting/Wear

From Carpenter, Hull, Shalik, 2008
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Proactive Materials Degradation Assessment — PIRT Expert Elicitation
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Phase 3

Allow for identification of components for PMDM programs

Identify Research Needs to Allow for PMDM
* Generic

Table 4-1: Summary of Elicitation Results - PWR Reactor Coolant System D FoR
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+ Component Specific  ror pPWR Evaluation:

Degradation Susceptibility/

Knowledge Calls
(163/1048

(19/49)

(11/27)

R

Per (Subgroup/Component)

(56/39)

Started with 48 subsystems containing 2203
components

Agglomerated into 392 subgroups
Conducted 1222 assessments (per expert) for
various mechanisms and subgroups

For BWR Evaluation:
Started with 28 subsystems containing 1660
components
Agglomerated into 297 subgroups

Conducted 1322 assessments (per expert) for
various mechanisms and subgroups

_/

From G. Carpenter et al., 2008
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