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Complementarity of RISMC and NRC Proactive 
Management of Materials Degradation (PMMD) Program
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Summary: RISMC as Decision Framework for 
NPP Materials Management 

Physics-driven models of component/materials reliability y p y
Multiple-mechanism materials degradation models
Monitoring, flaw detection, and intervention strategies modeled

R7 environment predicts lifetime physical stressors onR7 environment predicts lifetime physical stressors on 
materials

Key uncertainties
F db k f t i l / t f h i lFeedback of materials/component performance on physical 
environment

RISMC framework relates materials performance to long-
term safety marginsterm safety margins

Safety margin acceptability
Cost-benefit analysis of proactive management of materials 
d d tidegradation
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RISMC: Initial Physics-Based Passives Multi-
State Model – Stress Corrosion Cracking
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Initial Physics Models – Crack Initiation

Weibull model of crack initiation
P(t) = 1 – exp[- (t/τ)b]( ) p[ ( ) ]

t is time from last repair
T and b are physics-based Weibull parameters

σ = stress factor, Q = activation energy, T= absolute temperature
EPRI TR-104030; NUREG/CR-6737

Effective state transition rate to crack initiation: 

П represents aleatory probability density
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Initial Physics Models – Crack Growth

Crack growth
EPRI MRP-115 model

Relates rate of crack growth to crack tip stress intensity factor(K), thermal activation energy 
for crack growth (Q), operating temperature (T), and fitting factors

Effective state transition rate to radial macro-crack formation:

aD , aC = threshold macro-crack lengths (D=radial, C=circumferential), u is time from 
crack initiation, PD , PC = probabilities of given crack morphologies, and Π = aleatory 
distribution over crack growth rate

Simplified models of other phenomenology
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Solution Algorithms 

We have stochastic, time-inhomogeneous transition rates Φ
Not a Markov process
Not a semi-Markov process

Use of proportional hazards methodology
Embed stochastic non-Markov process in stochastic Markov process

St t i h tState-space enrichment
Number of states in enriched space = original number (6) x number of discrete 
time steps (6 months per step)
Process becomes a Markov chain – solved numericallyy

Solutions re-integrated in original 6-state space 
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Results – State Probabilities (τ = 4 years)
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Results – Component Rupture Rates 
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NRC PMMD: Degradation Modes

Abbreviation Degradation Mechanism 

BAC Boric Acid Corrosion 
CREEP Thermal CreepCREEP Thermal Creep
CREV Crevice Corrosion (including denting) 
DEBOND De-bonding 
EC Erosion Corrosion Including Steam Cutting and Cavitation 
FAC Flow-accelerated Corrosion
FAT Fatigue (corrosion/thermal/mechanical) 
FR Reduction of Fracture Resistance 
GALV Galvanic Corrosion 
GC General Corrosion 
IC Irradiation Creep 
MIC Microbially Induced Corrosion 
PIT Pitting Corrosiong
SCC Stress Corrosion Cracking (intergranular, transgranular, irradiation-

assisted, strain-induced, hydrogen-embrittlement) and Intergranular 
Attack 

SW Swelling 
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WEAR Fretting/Wear 
 

From Carpenter, Hull, Shalik, 2008



Color-Coding of Aggregate Scores



Proactive Materials Degradation Assessment – PIRT Expert Elicitation

Phase 3
Allow for identification of components for PMDM programs

Phase 4
Identify Research Needs to Allow for PMDM
• Generic• Generic
• Component Specific For PWR Evaluation:

 Started with 48 subsystems containing 2203 
components

 Agglomerated into 392 subgroupsPWR (29/436) (163/1048) (56/39)

Degradation Susceptibility/
Knowledge Calls

 Conducted 1222 assessments (per expert) for 
various mechanisms and subgroups

For BWR Evaluation:
 Started with 28 subsystems containing 1660 

components

(19/49)

(11/27)

(117/631)

(1/1)

(69/333) (199/1194)

(1/38)

(17/37)

(2/1)
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 Agglomerated into 297 subgroups
 Conducted 1322 assessments (per expert) for 

various mechanisms and subgroups

BWR
Per (Subgroup/Component)

(11/27)(1/1) (1/38)

From G. Carpenter et al., 2008


