

The Effect of Irradiation and Temperature on the Restrahlen Shape of 3C-SiC Reflectance IR Measurements: A Preliminary Study.

<u>I.J. van Rooyen^a</u>, J.A.A. Engelbrecht^b, J. H. Neethling^b, P.M van Rooyen^c

^a Idaho National Laboratory, United States of America
^b Nelson Mandela Metropolitan University, South Africa
^c Philip M van Rooyen Network Consultants, South Africa

2nd Workshop on HTGR SiC Material Properties, Idaho Falls, 19 - 20 Jan 2012

www.inl.gov

Agenda

- Background
- Irradiation effects on IR spectra
- Conclusion
- Acknowledgements

Idaho National Laboratory

Background: Introduction

- IR as SiC characterization technique is well known for semiconductor applications
- SiC as functional and structural materials for Nuclear application has spiked new interest in IR as characterization technique
- IR spectra provides information on optical parameters & electrical properties (layer thickness, carrier concentration, mobility)
- Restrahlen band is influenced by surface roughness & porosity
- Previous work was conducted : grain size, surface roughness, P-doping

Next Generation Nuclear Plant

 This work: Please note that full interpretation is not completed and results/conclusions are preliminary

Sample Number	Irradiation Temperature (°C)	Fluence (x1E+21)
1	Unirradiated	0.00
2	200	0.06
3	200	0.10
4	300	0.60
5	300	1.40
7	600	0.05
9	400	0.09
10	400	0.48
11	600	1.44
12	400	1.64
13	600	2.32
14	800	0.05
15	800	0.05
16	800	0.10
17	800	0.10
18	800	0.50
19	800	7.70
20	800	1.94
21	800	4.30
22	Unirradiated	0.00
24	800	0.05
25	800	0.10
27	1010	2.30
39	1508	5.80

Background: IR and P-content

The P-doping level varied between 1.1x10¹⁵ - 1.2x10¹⁹ at/cm³

Background: IR, grain size & surface roughness

 IR characterization on polycrystalline 3C-SiC samples with grain sizes ranging from 1.8 to 7.5 μm.

IR and neutron irradiation: 0-700°C

IR and neutron irradiation: 800°C

IR and neutron irradiation: >1000°C

1200

IR and neutron irradiation: Temp & FWHM

260

Next Generation Nuclear Plant

240 220 200 FWHM (cm-1) 180 Temp (> 1000°C) 160 Temp (800°C) 140 Temp (600-700°C) Temp (0-400°C) 120 100 200 ⁶⁰⁰ Temperature (°C) 400 800 1000 0

Investigate possibility of two temperature regimes namely:

- 0-400°C and
- 600-1000°C

IR and neutron irradiation: Irradiation fluence & FWHM

Idaho National Laboratory

Conclusions & Next actions: Preliminary

- The possible trend observed with increased irradiation temperature may be in fact due to surface roughness changes and not necessarily due to irradiation effects—needs to be evaluated.
- Preliminary results shows no specific/significant trend for the influence of irradiation fluence on the IR spectra for properties investigated for this preliminary study-----influence on peak wave number changes still needs to be examined.
- No prominent 2nd peak is observed for any of the samples investigated.
- Recommend that carrier concentration be determined using IR spectra and then experimentally verified using SIMS
- Future work to consider the measurement of absorbance & transmission spectra
- Complete interpretation of current results needs to be completed in conjunction with grain size, microstructure evaluation with critical value analysis for characterization technique for SiC in TRISO particles.

Acknowledgements

- Geneveve Deysel (NMMU) & Ettienne Minnaar (NMMU): IR reflectance measurements
- Yutai Katoh (ORNL): Irradiation of SiC samples and transport project management
- PBMR: Funding the irradiated SiC sample transport from USA to SA (2009)

