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HTGRs Can Be Used for Production of a Wide 
Variety of Energy and Commercial Products
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Number of 500 MW(t) HTGR Modules Required
to Meet Non-Electric Demands
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A First Step – the HTGR for Process Steam and 
Cogeneration

Applications

• Heavy oil recovery

• Oil from tar sands

i•Industrial process 
steam

• Coal liquefaction

• Coal gasification
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Multi-Module VHTR Plant for SI-Based Hydrogen 
Production
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Source: “H2-MHR Pre-Conceptual Design Report:  SI-Based Plant” [Richards 2006a]
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Multi-Module VHTR Plant for HTSE-Based 
Hydrogen Production
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Source: “H2-MHR Pre-Conceptual Design 
Report:  HTE-Based Plant” [Richards 2006b]
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Multi-Module VHTR Plant for Hybrid-Sulfur-Based 
Hydrogen Production
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Selection of Point Design Conditions

• Coolant outlet temperature
– Must be sufficiently high to generate process heat/steam to 

drive the application of interestpp
– Materials considerations for SG/IHX
– Impact on IHX size (LMTD)

• Coolant pressure
Desirable to minimize ΔP across heat exchanger surfaces (HX – Desirable to minimize ΔP across heat exchanger surfaces (HX 
stresses/lifetimes)

– Impact on required pumping power
– Impacts on efficiency/thermodynamics of the process heat 

applicationapplication
• Coolant inlet temperature

– Impact on required pumping power
– Impact on IHX size (LMTD)p ( )
– Impact on reactor vessel temperature
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Effect of Pressure and Coolant Inlet Temperature 
on Circulator Pumping Power
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Effect of Primary Coolant Inlet Temperature on 
IHX LMTD
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Control / Transient Considerations
• Flow sheet of the process application

– Efficient use of process heat (recuperation, etc.)
St bl  t l f h t d  b l  ith – Stable control of heat and mass balances with 
respect to small disturbances in temperature of 
supplied heat [Kubo 2008]

• Impact of chemical plant transients
– Should not affect safety of HTGR

Thermal absorber system (e g  SG) in chemical – Thermal absorber system (e.g. SG) in chemical 
plant can mitigate rapid fluctuations in HTGR 
helium temperatures during loss of heat load 
event events [Nishihara 2006]  [Sato 2007]event events [Nishihara 2006], [Sato 2007]

Prevention of automatic scram of HTGR during loss of 
heat load events (impacts on overall plant availability)
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Summary
• The MHTGR can play an important role for near-term and 

long-term process heat applications
– Industrial process steamp
– Oil from tar sands
– Heavy oil recovery
– Coal liquefaction
– Coal gasification

Hydrogen production– Hydrogen production
• The impacts on point design conditions must be evaluated 

for coupling the HTGR to specific process heat 
applications
Th  l d l t d i  t  t bl  t l f th  • The coupled plant design must ensure stable control of the 
process heat application

• The coupled plant design should have negligible impact 
on the safety case for the nuclear planton the safety case for the nuclear plant

• The chemical plant should be designed to minimize the 
impacts of loss of heat load events on operation of the 
nuclear plant
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