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Motivation 

 NTRs recognized as only solution to 
human exploration of near planets in 
near to mid-term time frame 
 Large payloads 
 Faster transit times 

 Reservations over projected costs, 
current need, and technology 
misconceptions 

Goals  
1. Show that NTRs enable human missions 
2. Show that NTRs are applicable and financially 

feasible for near-term non-human missions  
(Mars sample return) 

3. Provide cost-effective method and schedule 
for development and implementation 



NTR History 

 NERVA successfully demonstrated 
technology with graphite fuel 
 Over 17 hours run time 
 28 restarts of a single engine 
 $1.4B program in 1972 – $7.6B today 

 Modern concepts using W-Re cermet fuels 
 Improved fuel integrity  
 Projected Isp (s) = 900-950 
 Example – Pratt & Whitney’s Triton 

Pewee 1* Triton 
Mass (kg) 2,570 2054 

Thrust (lbf) 27,000 25,000 

Isp (s) 845 911 

Reactor Power (MW) 503 525 

* With graphite fuel. 



Affordable NTR Concept 

1. Build Pewee-derived engine with W-Re cermet fuel  
 Minimal changes to original design → low development 

cost 
 Less than 2 hours total run time → cheaper fuel 

qualification process than long-term terrestrial fuel 
 Prove in space with unmanned mission 

2. Build new reactor that is highly optimized for W-Re 
cermet 
 Apply to human missions and large unmanned missions 



NTR Versus Chemical Propulsion – 
Performance for Typical Mission ΔV’s  

 Masses of NTR options increase if LOX augmentation is 
employed (still outperforms chemical) 

 Masses increase exponentially with increasing ΔV 
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Interplanetary Trajectory Optimization 

 Assumptions 
 Impulsive burns 
 Planet positions from propagated static ephemerides  

 Capabilities 
 Global optimizer  
 Elliptic planet trajectories 
 3-D spacecraft trajectories 
 Plane changes 
 Parking orbits 
 ΔV’s from aerocapture/aerobraking 
 Limit entry interface velocities 
 Specify stay times/times of flight 
 Type 1 and Type 2 trajectories (only Type 1 used for 

this project) 

  
 



Interplanetary Trajectory Optimization 

 Value to minimize – IMLEO (kg) 
 Design variables 

 Launch date 
 Time-of-flight to Mars 
 Stay time at Mars 
 Time-of-flight to Earth 

 Additional output 
 ΔV budget 
 Mass budget 
 Positions and velocities 



Launch Trajectory Optimization 

 Solve boundary-value problem for launch 
trajectory 

 Minimize propellant mass 
 

Initial Conditions 
(Launch Site) 

•Latitude 
•Longitude 
•Elevation 
•Launch site 
inertial velocity 

Final Conditions 
(Orbit) 

•Semi-major axis 
•Eccentricity 
•Inclination 
•Longitude of 
ascending Node 
•Argument of 
periapsis 
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2010 Planetary Science Decadal Survey 

 Planned NASA Mars sample return mission 
 Next in Flagship class 
 2018-2024 timeframe 
 Approximately $6 billion 

 Three launches of Atlas V 531-551 
 Science package – combined science/collection rover 
 Orbiter – telecom, TEI, Earth entry vehicle 
 Lander – Mars ascent vehicle, fetch rover 



Evolutionary – Architecture 

 Science package, lander, and orbiter 
are identical to PSDS 

 Single SpaceX Falcon Heavy replaces 
three Atlas V launches 
 Trans-Mars injection – single Pewee-

derived NTR instead of three Atlas V third 
stages (volume and mass savings) 

 Money saved on launch costs pays for 
NTR development and testing 

 



Evolutionary – Mass Budget 

Orbiter   

Lander / MAV  

Rover  

TMI H2 Tank 

NTR Engine & 
Shield 

TMI LOX Tanks 

Structure etc. 

Components for LOX Augmented Design Mass (kg) 

Orbiter 3,270 

Lander / MAV 4,668 

Rover 4,457.4 

TMI H2 Propellant + Tank 4461 

TMI LOX Propellant + Tanks 17,841 

NTR Engine w/ Radiation Shield 3,055 

Structure etc. 2,136.6 

TOTAL MASS TO LEO 39,889 



Evolutionary – Launch Opportunities 

Preferred Required 
IMLEO < 45 MT IMLEO < 51 MT 

Launch before 2026 



Decadal Survey MSR NTR Augmented MSR Project Management/SE/MA 92.70
MAX-C Rover 1,823.40 1,823.40 Fuel Development & Certification 85.53
Orbiter 805.17 805.17 Engine Development 238.01
Lander 1876.74 1876.74 Engine Testing 59.59
MSRH 475.74 475.74 Launch Facility Upgrades 11.18
NTR 0 712.16 Launch Ship Upgrades 31.12
Launch Costs 776.6 149.55 Security Upgrades 11.72
Phase E Costs 341.5 338.02 Fuel Costs 21.24
Total 6,099.15 6,180.78 Education / Outreach Upgrades 23.15
*$M in 2015 Dollars NTR Reserves 137.91

Evolutionary – Cost Analysis 

Notable differences from PSDS 
 Single launch changes timeline – lander waits in orbit while large 

rover collects samples 
 Rover budget was altered after the PSDS was issued – this does not 

change relative cost of missions 



Evolutionary – Cost Analysis 

 $7.6 Billion in 2011 dollars already invested in 
NTR development  

 ~5yr NTR Development includes: 
 Construction of 2 cermet Pewee-derived NTRs 

 Test engine 
 Flight engine 

 SAFE testing in Nevada 
 Fuel development and certification 
 30% reserves 

 ~$100M more than PSDS w/ NTR costs 
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Revolutionary NTR MSR Mission 

 Triton-derived NTRs 
 Interplanetary transfers 
 Mars descent, landing, and ascent 

 Can return ~100 kg of samples 
instead of ~1 kg from chemical 
missions 

 Mars Hopper enables collection 
of samples from all over Mars’ 
surface 



Revolutionary – Mass Budget 
Component Mass (kg) 
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rv

ic
e 

M
od

ul
e NTR & Radiation Shield 1682 

Structure, Thermal, Communication, etc.. 978 

Power (Solar) 250 

LH2 Recondenser 56 

Sample Reentry Components 350 

TMI/MOC Propellant & Tank 21485 

TEI Propellant  1198 

M
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s 
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NTR & Radiation Shield 1682 

Structure, Thermal, Communication, etc.. 683 

Power (Bimodal NTR) 175 

Secondary Power (Battery) 8 

Rover 70 

Propellant Collection & Recondenser 297 

Inflatable Descent Components 543 

Propellant & Tank 1012 

TOTAL MASS TO LEO 30470 

Lander / MAV 

TMI / MOC 
H2 Tank 

TMI / MOC 
LOX Tanks 

TEI H2 Tanks 

NTR Engine 



Revolutionary – Architecture 




Revolutionary – Launch Opportunities 

Preferred Required 
IMLEO < 35 MT IMLEO < 51 MT 

Launch before 2035 



Revolutionary – Cost Analysis 

 Cost estimates much more difficult 
 Technology less developed 
 Larger extrapolations 
 Less comparable baseline metrics 

Evolutionary Revolutionary
Rover / Hoppers 1,823.40 1,871.67
Orbiter 805.17 1003.82
Lander 1876.74 2849.77
MSRH 475.74 99.67
NTR 712.16 990.9
Launch Costs 149.55 311.85
Phase E Costs 338.02 590.34
Total 6,180.78 7,718.02
*$M in 2015 dollars. 
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Summary – Missions 

PSDS Evolutionary Revolutionary Manned 

Trans-Mars 
Injection Chemical Pewee-derived 

NTR Triton-derived NTR Triton-derived NTR 

Mars Orbit 
Insertion Chemical Chemical Triton-derived NTR Triton-derived NTR 

Trans-Earth 
Injection Chemical Chemical Triton-derived NTR Triton-derived NTR 

Earth Orbit 
Capture Chemical Chemical Triton-derived NTR Triton-derived NTR 

Entry, Descent, 
and Landing 

Method 

Parachute / Sky 
Crane 

Parachute / Sky 
Crane 

HIAD / 
retropropulsion 

HIAD / 
retropropulsion 

IMLEO (kg) 48,513 39,889 30,465 632,000 

Current TRL 5 5 4 2-3 



Summary – Mission Goals 

 Evolutionary 
 Cost-effective flight test of NTR 

 Revolutionary 
 Returns large amount of samples from entire planet 
 Proves bimodal fission surface power 
 Proves in-situ propellant collection 
 Proves high-mass EDL 

 Manned mission 
 Accomplishes long-term goal in human exploration 
 Proves technology for further exploration 



Summary – Project Goals 
 Evolutionary mission 

 Detailed mission architecture 
 Interplanetary trajectory optimization 
 Mass budget 
 Cost analysis 
 CAD models to illustrate mission 

 Revolutionary mission 
 Detailed mission architecture 
 Trajectory optimizations 

 Ascent / Descent 
 Interplanetary 

 Mass budget 
 Cost analysis 
 CAD models to illustrate mission 

 Human mission 
 Architecture 
 Trade studies 



Future Work 

 Affordable NTR 
 Detailed design and analysis of Pewee-

derived NTR with W-Re fuel 
 W-Re fuel development 

 Retro Propulsion EDL 
 High-fidelity CFD models 
 Descent trajectory optimization 
 Large mass landing technique 

 
 



Questions? 
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