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500 scf H2 = 1.2 kg H2
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High Temperature Electrolysis Plant
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Porous Anode, Strontium-doped Lanthanum Manganite

Gastight Electrolyte, Yttria-Stabilized Zirconia

Porous Cathode, Nickel-Zirconia cermet

2 H2 0 + 4 e- → 2 H2 + 2 O=

2 O= → O2 + 4 e-
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0.10 mm                  0.01 mm

0.05 mm                    1.500 mm

0.05 mm                    0.05 mm

90 v/o H2 O + 10 v/o H2  25 v/o H2 O + 75 v/o H2
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High Temperature Electrolysis:  from Button Cells 
to the Integrated Laboratory Scale Experiment

Button cell (2003) 3.2 cm2 10-cell stack (2004)  640 cm2

Integrated Laboratory Scale (operational 8-22-07)
720 cells, 3 modules (2008) 46,080 cm2

120-cell half-module (2006) 7,680 cm2

CFD and Flowsheet Analyses

Temperature profile of cell

Research Goals:
• Develop efficient solid-oxide electrolysis cells, building on solid-oxide 

fuel cell research
• Decrease cost, increase durability
• Determine reasons for long-term cell degradation
• Optimize plant designs  
• Co-electrolyze CO2 and steam to CO and H2
• Develop designs to apply nuclear heat and H2 to heavy petroleum and oil 

sand upgrading 
• Integrate nuclear energy sources and fossil/biomass carbon sources for 

hydrocarbon synthesis  

Process Flowsheet for 
Reactor-driven commercial plantl
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Assembled ILS Components
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ILS Module Installation
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ILS Module Installation



Herring 5-21-08  10

Start of Testing

Initial operations began Aug 24, 2007

Module testing began Sept 24, 2007
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ILS Module Sweep Data
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VHTR/HTE Economic Sensitivity Analysis
(For plant gate cost ~$3.23/kg hydrogen and 10% internal rate of return)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Major HTE Components,excluding SOEs (-20%
to +20%)

Engin/Design Costs (6% - 25% of capital cost)

SOE Cells changed per year (20% -50%)

Plant staff (100 - 300)

Major Reactor/PCS Components (-20% to
+20%)

SOE cost ($100/kwe -$300/kwe)

Unplanned replacement costs (0% -10% of
depreciation costs per year)

Internal Rate of Return (5% - 15%)

$/kg of Hydrogen
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Co-Electrolysis

• Primarily a “proof-of-principle” research project
• Investigate the feasibility of producing syngas

2H2 and CO

• using high-temperature co-electrolysis of H2 O and CO2

2 H2 O + CO2 → 2 H2 + CO + 1.5 O2

• while taking advantage of solid oxide fuel cell technology.
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SYNTHETIC FUELS
• Nothing New About Synfuels

– Produced via the Fischer-Tropsch process

• nCO + (2n+1)H2 → Cn H2n+2 + nH2 O

• Discovered before WWII
• Pressure primarily determines n

• Production of Synfuels requires Syngas
– Previous H2 production releases large amounts of CO2
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Co-electrolysis in an solid oxide cell
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INL Coelectrolysis Experiment
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Products of Fischer Tropsch Synthesis
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Progressive steps in the use of hydrogen 
produced through nuclear energy

• Upgrading of current heavy crude oils for the production of gasoline

• Upgrading of the Athabasca Oilsands for the production of diesel 
and gasoline

• Catalytic addition of H2 to coal (hydrogenation) to produce gasoline

• Fischer-Tropsch synthesis of diesel and jet fuel using CO from coal 
gasification  and H2 from nuclear energy 

• Co-electrolysis of CO2 from biomass and steam to produce CO and 
H2 for synthetic, GHG-neutral, gasoline, diesel and jet fuels

• Nuclear production of H2 for use in fuel-cell-powered vehicles.
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Areas for University Involvement

• Investigation of causes and mechanisms for degraded performance 
during long-term cell and plant operation
– Surface science, interfacial modeling, changes in morphology, 

transport of Cr, Sr and Si at 800 – 900°C
– Corrosion in hot, high oxygen environments, protective coatings, 

valves and instrumentation
• Integration of nuclear hydrogen production into the upgrading and 

refining of unconventional fossil resources (heavy crude, oilsands, 
oilshale,..) and biomass

• Dynamic Modeling of the interaction of chemical plants with a reactor 
heat/hydrogen source

• Dynamic economic modeling to account for varying fuel/electricity 
price relationships 
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Conclusions
• Conventional electrolysis is available today
• High temperature electrolysis is under development and will be more efficient 
• HTE Experimental results from 25-cell stack and 2x60-cell half-module, 

fabricated by Ceramatec, 
– Hydrogen production rates in excess of 160 normal liters/hour were 

maintained with a 25-cell solid-oxide electrolysis stack for 1000 hours
– Hydrogen production greater than 800 normal liters/hour was achieved in 

the half-module test for a 2040 hr test
– An Integrated Laboratory Scale experiment is now being build, has 

produced 1320 normal liters/hour and is designed for >5 normal m3/hour
• In the near-term hydrogen from nuclear energy will be used to upgrade crude 

and later to synthesize conventional gasoline and diesel fuel from renewable 
carbon sources

• In the long-term pure hydrogen from nuclear energy may power vehicles 
directly through fuel cells 
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