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Evolution of Population on Earth…

Today : 6 billion inhabitants

… Around 10 billion by 2050

⇒
 

An increase of nearly 70%
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Predicted Global Electricity Demand

ELECTRICITY DEMAND

Year



ISU/INL

•
 

Growing Energy Needs
&

•
 

Threat of climate Change

•
 

Growing energy needs 
&

•
 

Threat of climate change

Need for decrease CO2

release while producing
more energy
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WE need a 
CO2

 

-free energy source such 
as nuclear energy
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World Electricity Sources

Conventional Thermal
64%

Hydroelectric
17%

Nuclear
17%

Renewables
2%



ISU/INL

U.S. Electricity Sources
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France Electricity Sources
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Shearing
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Dissolution
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Feed
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Strategies for a flexible 
management of actinides 

in Gen IV fast neutron systems
Natural resources conservation

Waste minimization
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Gen IV systems based on a global actinides recycling

•
 

A drastic minimization of ultimate waste:
–

 

Very small volumes
–

 

Heat reduction
•

 
An optimal use of energetic materials

•
 

An increase resistance to proliferation
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Uranium – 94%
Plutonium – 0.9%
Neptunium – 0.1%
Americium – 0.1%
Curium – 0.015%
Fission Products = 4.9%
--------------------------------
High Radiation Level
High Radiotoxicity
High Level of Decay Heat

UREX+1a 
Process

Pure 
Uranium Storage for future recycle

Cesium and 
Strontium

Near- surface
decay storage

Transuranic 
Elements Recycle fuel

Residual 
Fission 

Products
Geologic disposal (with fuel 
cladding and assembly hardware )

Spent Nuclear Fuel

.

•
•
•

Long-Lived 
Fission 

Products

Technetium and
iodine in durable
waste form for
geologic disposal

The Global Nuclear Energy 
partnership (GNEP)
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Extraction of Tc-99
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Motivation for the Extraction of Tc-99

The research goal remains the adaptation of 
processes to the evolution in fuels while optimizing 
the back-end of fuel cycle costs and guaranteeing a 
very high level of safety. 
The back-end of the fuel cycle is guided by three 
lines of research:
•

 
separation and transmutation of long-lived 

radionuclides
•

 
studies of the possibilities of reversible or 

irreversible deep geological storage 
•studies of conditioning and long term surface interim 
storage. 
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Importance of Determining 99Tc 
in Radioactive Liquid Wastes

Liquid-liquid 
Extraction

of 99Tc with Crown-
 Ether

Long Half Life Time
t1/2 = 2.1.105

 

years

Pure Beta-Emitter

Chemical 
separation prior
to any 
measurement in
complex media
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Modifying Factors of the Crown Ether
 for the Complex Stability

Cation Size
Donor Atoms
Oxygen Atom 
Numbers
Flexibility
Solubility

O

O

O

OO

O

12C4 15C5 18C6 21C7 24C8
1.2-2.5 Å 1.7-2.2 Å 2.6-3.2 Å 3.4-4.3 Å 4.5-5.6 Å

Size of crown ethers

Dibenzo-18-Crown-6 (DB18C6)
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4,4’,5,5’-Tetraiododibenzo-24-crown-8 ether
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4,4’,5,5’-Tetraiododibenzo-24-Crown-8 Ether
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ReO4
-

 
Extraction with Iodo Crown Ether

Diluent Aqueous
Phase 

% Extraction 

Cyclohexanone 0.1M HNO3 92%
Nitrobenzene 0.1M HNO3 5.6%
Nitrobenzene
/Acetone 1:1

0.1M HNO3 50%

Nitrobenzene
/methyl isobutyl 

ketone 1:1

0.1M HNO3 21%

Benzene/Acetone 
4:1

4M NaOH 42.2%

Toluene 4M KOH 28.5%
Toluene 4M NaOH 26.6%
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Tetra-Ammonium-Dibenzo-24-Crown-8 Ether
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New Macrocompounds Design

O OTcO4
- TcO4

-

N
X X

X X
n

X = O or NH

Anion Encapsulation Receptors for TcO4
-

 

Extraction:
Dibenzofuran and xanthene will be used as scaffolds to construct
anion encapsulated receptors that contain different cavity size 
dimensions. 
The cavity between created by the two cofacial rings is intended to 
encapsulate and desolvate TcO4

-.
Rings containing hydrogen bonding groups (when X = NH 
compared to X = O) are expected to result in an increased affinity 
for TcO4

- .
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Anion Encapsulation Ligand
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Separation Trivalent Actinides 
from Trivalent Lanthanides
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Motivation
•

 
The separation of trivalent actinides from fission 
product lanthanide ions represents one of the most 
challenging aspect of advanced nuclear fuel 
partitioning schemes. 

•
 

A considerable amount of effort has been dedicated 
to the development of effective methods for 
accomplishing this separation, essential for 
transmutation of the actinides heavier than Pu. 

•
 

Among the methods currently considered to be ready 
for technological deployment is the TALSPEAK 
(Trivalent Actinide -

 
Lanthanide Separation by 

Phosphorus reagent Extraction from Aqueous
 Komplexes) Process, developed in the late 1960s at 

Oak Ridge National Laboratory, as well as the Ganex 
(Grouped Actinides Extraction) Process

 
developed in 

France.
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Advanced Separation 
Achievement at ATALANTE

Marcoule

Demonstration test in 2005 on 15 kg of spent 
fuel with industrial technologies

Used Fuel

PUREXU, Pu

FP

Ln 2- SANEX

1- DIAMEX

Am, Cm

Np

P O

O
O

O TBP

Towards GANEX, a Grouped Actinide Extraction Process
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DIAmide Extraction 
co-extration of Am, Cm, Ln from PUREX raffinate solution
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SANEX
 Selective ActiNides(III) Extraction 

extraction of Am, and Cm over Ln directly from 

DIAMEX product solution

 
.

Nitrogen donors: TPTZ and  substituted TPTZ
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• BTP (bis triazines pyridines) and  substituted BTP
• These nitrogen donors were the surprise of the last years . They have the formula

• H
• ⏐
• H       C         H
• \ //    \ /
• R                 C          C                   R
• \ ⏐ ⏐⏐ /
• C ⎯N C          C       N⎯ C                    pKa BTP  <  pKa TPTZ
• //        \\ /    \\ /     \ //         \\
• R⎯C           C         N C            C⎯R
• \ /                         \ /
• N  =  N                             N =  N

• - These ligands  are able to extract Am(III) and Cm(III) from 1N nitric acid as nitrates 
without the addition of a second acidic extractant and that for 10-2 M solutions

SANEX (2)
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HDEHP
Di 2 Ethyl-Hexyl Phosphoric Acid

The TALSPEAK Process



ISU/INL
 

Specie 4

Specie 5

Specie 6

HDEHP 

By-
ProductA 

Specie 1

Specie 2 

By-
ProductB 

End-products 
 
Gases: 
N2, N2O 
CO2, CO 

Specie 
3

H3PO4 

2, k2 

3 

k4

k5,i

k6,i

k3/k-3

k7

Potential reaction scheme of 
HDEHP degradation in contact 

with nitric acid solution 
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HDEHP Chemical Degradation

•
 

Hydrolysis (acid catalyzed):
 

the reaction of HDEHP with 
H2

 

O/H+

 

may yield to an ethyl-hexanol specie, and ethyl-
hexyl-phosphoric acid. The ethyl-hexanol specie may 
then react to form an ethyl-hexyl nitrate, carboxylic acids 
and gases.

•
 

Dealkylation:
 

the reaction of HDEHP with nitric acid may 
yield to the formation of an ethyl-hexyl nitrate and ethyl-

 hexyl-phosphoric acid.  Ethyl-hexyl nitrate may then 
react to form carboxylic acids and gases (the reaction 
may also lead to ethyl-hexanol specie).

•
 

Pyrolysis: HDEHP can be decomposed into ethyl 
hexene, phosphoric esters and phosphoric acid.

•
 

Oxidation:
 

the reaction of HDEHP with nitric acid yields 
gases
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Experiments under way at ISU

•
 
Determine the extraction mechanisms 
that take place between HNO3

 

and 
HDEHP 

•
 
Determine the complexes and/or 
degradation products formed between 
HNO3

 

and HDEHP in the organic phase



ISU/INL

Vision of the Nuclear Energy for 
the 21st

 
Century

Nuclear energy
for the 21st century

• Renaissance
⇒ Avoid spent fuel 

pilling up!

• Sustainability

Gen III Reactors
with advanced recycling

proven technologies

Gen IV Reactors
with fuel cycle

options
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