Microstructural Stability in Irradiated Materials

Phase Field Model Development for
Microstructure and Compositional Changes under
Irradiation

Anter EL-AZAB
Florida State University

Collaborations:
S. Rokkam, S. Dubey, J. Deng, T. Hochrainer
D. Wolf (ANL) & P. Millett (INL)

August 19, 2010 Idaho National Laboratory



Acknowledgments

— BES

— INL

— DOE-NE

— BES

Computational Materials Science Network (expired)

LDRD via D. Wolf (summer support, 2008-2009)

Fuel Cycle R&D (subcontract from INL)

EFRC on Materials Science of Nuclear Fuel

August 19, 2010

Idaho National Laboratory



Mesoscale is where material complexity shows
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continuum in irradiated materials
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mesoscale in irradiated materials
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Statement of mesoscale modeling problem

Given the radiation damage parameters, stress and temperature
conditions, chemical environment, model the dynamics of:

Structural defects

- Compositional change and phase changes
- Behavior of gaseous species
- Interfacial dynamics (GB motion, clad/fuel interactions, etc)

- Elastic state and deformation history
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The phase field framework

- Resolves the space and time dynamics of radiation damage,
diffusion, and microstructure and micro-chemical changes in
irradiated materials

- Easy to represent point defect and atomic species and incorporate
microstructure features

- Captures the synergy among all defect and microstructure
processes

- Stress, electrostatic, and temperature effects easily incorporated

- Framework already developed for some model systems; the level of
complexity being increased to tackle complex situations

- Input can be connected with the lower scale material data/models;
output corresponds (one-to-one) to with experimental observables
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typical phase field model

From a free energy functional, we derive kinetic equations for
composition and microstructure following Onsager formalism of
non-equilibrium T.D.

Fle.7l= | f(c.m) dQ

@:V.Mv£+§(x,t) a—n:—L5—F+§(x,t)
ot oC ot on
Cahn-Hilliard Allen-Cahn (G.L.)
Eq. Eq.
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phase field model for irradiated materials

Appropriate sources and defect reactions are added to represent

the irradiation environment and defect process:

modified Cahn- 8C 5F

Hciillfiarddcl:th E:V'MVE‘Fé:(X,t)‘I‘G(X,t)—R(X,t)
modified Allen- %, oF
Cahn (G.L.) Eq. a—?I—La—n-l-é/(X,t)—l-C:lrrad (X,t)
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Status of phase field modeling
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binary alloy

-0 |
S 7 9 Vacancies + Interstitials
223 Species Redistribution
T © O
O & O
SIS Y
Phase Change
o Gas atoms
c
0w . 2 Stress effects
T O E - :
ST S Dislocations
o C = . .
=9 Grain boundaries
S

Swelling, Microchemistry, Gas Behavior, Creep

August 19, 2010

Idaho National Laboratory

11



oxide fuel
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Challenges

- Free energy models are difficult to develop

- Fixing model parameters require non-simple mathematical analysis of
the model to guarantee equivalence with sharp-interface physics
models

- Handling the complexity of the complete problem: coupled radiation
damage, diffusion, microstructure and composition changes, with
stress and electrostatic effects

August 19, 2010 Idaho National Laboratory 13



lllustration for void nucleation and growth

Sharp interface model for void growth

Phase field model for void nucleation and growth

Asymptotic analysis and model parameter determination

Thermodynamic underpinning

Gas bubble nucleation and growth

Results
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Classical sharp interface model

— Voids grow (shrink) depending on flux of
point defects. The growth model consists of
3 equations:

— Growth rate of void size:

- dR
R=-—
dt

L1 Qe { )
_-"_Pf { D, lck — e exp (‘;’&)] - [J,{'.'1}

— Rate equations for point defect (mean) fields
derived using theory of sink strength:

1 . Byll
vE b = 4TRND, [t (G ep (:;T)]

* By Dy (U, - O3

. — K . . .
+ Lo, [C.- Cetoexp ('- D H_—)J p gl = daRNDC, + £, (py + ;) DG,
+ 1FTH|,N|,DLL1.. * ki G0,

#4ArR, N, D O+ kg Oy
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Diffuse interface (phase field) model

— Interface between void and matrix is diffuse <

(but has small width)

— Setting sources and sinks aside, the Chan- -

Hilliard and Allen-Cahn equations are

8{:7_; (‘:—?CL (‘:'???
— v ' "?"'IUV Ty — v * J.T\f{‘;;v g _— = —
ot Ho s 1 14 - 5
" C16F 10F OF
wit [y = N ocy Hi = N oo’ [y = a e —

— Free energy functional:

F = N/ () Wo(cy, ¢i) + nw(cy, ci) 4 ko Veo|* + kil Ve * + 1| Vnf?] dQ
Q
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with
h(n)=(n—172 we, )= Alc, —1)* + Bc?

Uo(cy, i) = Eley+ Fle; + kgT e,ne, + c;lne; 4+ (1 — ¢y — ) In (1 — ¢, — ;)]

- Ned to perform asymptotic expansion to fix model parameters.
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Model input

Quantity Value Value (rescaled units)
Formation energy of defects E; 1.0 eV
. . . Ej?c 2.2 eV
Diffusivities Dg 2.5 x 107> m?/sec | 2.5 x 10* nm?/nsec
Kinetic barriers D¢ 2.0 x 107 m?/sec 2.0 x 102 nm?/nsec
_ Em 0.7 eV
Thickness parameter delta Em 0.12 eV
— Gradient coefficient (alpha) Y 1.7 J/me 10.6 eV/nm?
Q 1.2 x10-%¥m? 1.2 x10~2nm?
— Surface energy 5 1 nm
Vo 7.23 x10%3 1 /sec 7.23 x10% 1/nsec

— All well defined physical quantities.

August 19, 2010
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Energy landscape (vacancies only)
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void growth and shrinkage
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Figure 5. Void radius as a function of time for different initial vacancy supersaturation levels.
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void growth and shrinkage

Rokkam et al.
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void-void interaction

Rokkam et al.
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nucleation of voids under vacancy generation

Rokkam et al.

t=0

Vacancy field evolution showing void nucleation due to radiation
induced vacancies

Voids nucleate due to fluctuations in the vacancy
concentration field. The nucleation process is homogeneous

August 19, 2010 Idaho National Laboratory 23



analysis of nucleation and growth

Rokkam et al.

70.0 X :
// \ N
’ \ N
\ \
0.4} - s0.0 | \ S |
"(. \ \\
. e R
~—~~ e [N N
= Il T 50.0 | RN . ]
» — .}. wn 1 .\‘ SO
(7p] 03t 4 é ~ S o
o o’ S ! NN ~.
O o 5 ! ® o~ ,o\o‘k
o) - S 400f , " A T
Z T SRR ‘5 : ol See-
C P ’ ‘/ -(!‘—. ------------- | S I' ¢ ° .\.\:“..
L v - 1 L 'S
9 0.2 //’ :II /,a" 7’ 8 300 .’ :I "‘rmg::ooo 1
+— e h PEae i E I ) ~—
(&) e - ! ! é
4 L - -7 , 3 I,
-g et ; S 200f ! , ]
01} ; ' t .
% | I’ / 'I ll
1 ] | [ N ]
> ! K 10.0 ! .
:‘ /’. ’l /
/I . » c‘
0.0 A . ot \ \ 00 ) L4 ) [ ] . .
0 50 10 150 200 250 300 50 100 150 200 250
time
time
Idaho National Laboratory 24

August 19, 2010



nucleation close to a preexisting void

Rokkam et al.

Vacancy field evolution showing void growth in the
presence of radiation effects

Initial void grows while new voids nucleate ...

Ripening suppresses the small voids nucleating in the vicinity of the large one.
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role of grain boundaries

nucleation

growth

denuded GB
regions

Millett et al.

Free surfaces lead to same effect
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Introducing interstitials

Rokkam et al.
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phase field model with interstitials

Energy

Species

Extended
structural
defects

F=NJ [h(n) o(Ce)+ J0) £/ (C,e)+ Ve, [+ 2ve +%|Vn|2Jdv
\Y%

f(c,c)=Elc,+E'c,+k;T[c,In(c,)+c,In(c,)+@-c,—c)Inl-c,—c,)]

Xy o 1 dF B oG8
=V (MVVN PN j+§(r,t)+ P,(r,t)—R,, (r,t)— S~ (r,t)

\Y
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void nucleation under irradiation

Snapshots showing the nucleation and growth of voids in the presence of dynamic cascade damage.
Upper row (from left to right) illustrates the vacancy concentration field while the lower row illustrates
the interstitial field. During the simulation, an interstitial production bias of 0.9 is assumed (i.e., there
are 10% more vacancies introduced into the system), the net effect of which is similar to a dislocation
bias. Within the voids, the vacancy concentration c, = 1 and the interstitial concentration c, = 0

Millett, EI-Azab, Rokkam and Wolf
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porosity and void density evolution
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Plots of (a) the porosity and (b) the void number density throughout time for the
simulation shown in Fig. 7. The orange lines represent K = 6.4 x 10 dpa/ns, while the
blue lines represent K = 2.6 x 10° dpa/ns. The void evolution can be characterized by
three distinct stages: I incubation, II nucleation and growth, and III coarsening.
porosity 1n stage II 1s fitted to the Johnson-Mehl-Avrami equation (Eq. (19)). and agrees
quite well with the calculated values of nucleation rate, J. from (b) and the void growth
rate, R, from Fig. 3. In the coarsening stage. the void density saturates and decreases

slightly due to Ostwald ripening.
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swelling under cascade condition

Rokkam et al.
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swelling under cascade condition

Rokkam et al.
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gas effects and bubble formation

Gas atoms become part of the dynamics. Governing equations become more
complicated.
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Phase field model with substitutional gas atoms and GB

Fon| {h(ﬂ)fs(cv’ci'cg)Jr AN CREY :ldV
LY (e )+ FI(C0,CuCe e )

¢, In(c,)+c;In(c,)+c,In(c,) + }
)

f*(c,.c,,.c,)=Elc,+Efc,+ Elc, +k,T
(Cv C; Cg) vC, TEC+ gCg+ B |:(1_CV_Ci_Cg)|n(1_CV—Ci—Cg

£2(c, €1y )=[(c, —1)° +C2 ]+ [, + CokaTINCy +C kg TIN(keT)]

I

k=1

P
P00y e )= - IVE + Ve 4 Ve [+ SHVaf + S D V[
k=1

0’2 —-V. [MVV% g:j+ E,(r,t)+P,(r,t) =R, (r,t) - S8 (r,t)
%:V(M,V%% +E(RD)+ PO =R, (1) — S (r.t)
%:V-[MQV%%J+ &, (r 1)+ Py(r,t)
éng’t) =—L%+ ¢(rt)+P,;(r.t) @:—g% Millett, El-Azab, Wolf
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Increase of gas concentration inside an initially-empty void surrounded by a solid with a supersaturated gas
concentration. The top figures show the evolution of (a) vacancy and (b) gas atom concentration fields. (c) Plots of the
conserved concentration fields, c,, c;, ¢y, along a cross-sectional slice through the centerline of the bubble throughout
time. The absorption of gas atoms into the void creates a gradient in the gas concentration in the adjacent solid region.
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Growth of a bubble due to a supersaturated vacancy concentration in the solid. The gas concentration in the bubble,
which is initially over-saturated, decreases due to the increase in bubble volume. The top figures show the evolution of
(a) vacancy and (b) gas atom concentration fields. (c) Plots of the conserved concentration fields, c,, ¢;, ¢, along a
cross-sectional slice through the centerline of the bubble throughout time.
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Shrinkage of a bubble due to a supersaturated self-interstitial concentration in the solid. The gas concentration in the
bubble, which is initially under-saturated, increases due to the decrease in bubble volume. The top figures show the
evolution of (a) vacancy and (b) gas atom concentration fields. (c) Plots of the conserved concentration fields, c,, c;, ¢,
along a cross-sectional slice through the centerline of the bubble throughout time.
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Millett, EI-Azab, Wolf

Nucleation of
bubbles under
concurrent
cascade and

gas production

conditions

Snapshots showing the nucleation and growth of bubbles in the presence of on-going cascades modeled using Eq. (10) and gas
production using Eq. (15). The top-to-bottom rows represent the (a) 7, (b) c,, (c) ¢;, and (d) c, fields. During the simulation, an
interstitial production bias of 0.9 is assumed (i.e., there are 10% more vacancies introduced into the system), the net effect of which
is similar to a dislocation bias. Within the voids, the vacancy concentration c, = 1, the interstitial concentration c; = 0, and the gas

concentration varies.
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Figure 6: The evolution of (a), (d), (g) porosity, (b), (e), (h) bubble density, and (c), (f) average gas concentration inside the
bubbles throughout time. The top row ((a), (b), (c)) represents a gas production rate of 1.28 appm/ns, while the middle row ((d),
(e), (f)) represents a gas production rate of 0.256 appm/ns. In (g) and (h), the gas production rate is zero. As shown in (i), for
increasing gas production rate, the bubble density increases while the average bubble size decreases. Also, as shown in (c) and
(F), the gas concentration within bubbles decreases during stage Il (nucleation and growth) due to the relatively rapid bubble
growth while the bubbles are still small.
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Figure 10:

Millett, EI-Azab, Wolf

(a)-(d) Snapshots throughout time of the nucleation and growth of intergranular gas bubbles in a

polycrystalline grain structure, while (e) is a close-up view. Bubbles existing on GBs are lenticular shaped, whereas
bubbles on triple junctions have a curved triangular shape. (f) Image of intergranular bubbles in UO, taken from [ref].
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Figure 11: Characteristics of intergranular gas bubbles for different grain sizes. The (a) porosity, (b) bubble density, and
(c) gas concentration within the bubbles does not vary substantially for the different grain sizes. However, as the grain
size increases, the (d) average bubble diameter increases, the (e) average GB bubble spacing decreases, and the (f) GB

bubble coverage increases. (The data for (d), (e), and (f) are taken at the end of the simulations, t = 62 ps).
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Binary alloy (concentrated systems)

- On-lattice species: V, A, B; 3 types of
(dumbbell) interstitials AA, AB, BB

- 6 conserved order parameters (6 coupled
diffusion-reaction equations) + microstructure
equations

- Complex free energy expression — free
energy represents the atomic configuration
(obtain by statistical coarse graining)

- Complex kinetics of diffusion and reactions

-  Concurrent microstructure and micro-
chemical changes

Dubey, EI-Azab
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Alloy free energy (no microstructure)

Free Energy of the alloy without defects is given as:

F =z kT
N = 5 caVaa+cVap —I—CACBQAB] —I—kT[CAIOgCA + cglogecp +3’0g(ﬁ)]
E

N = Total number of lattice sites,

z = Co-ordination number of the crystal,

c; = concentration of it species (i = A,B),

Qap = 2Vap — Vaa— Vg = Interaction parameters,
Vii. (i.j = A,B) = bond enthalpy of ij bond,

ve = Einstein’s frequency of vibration.
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When|vacancies|are present, the free energy is given as below:

F

N cEf + 2 > [CAVAA +cgVee+cv Vi +Qapcacs +Qavcacy +QBVCBCVJ

kT
+kT [CA logeca + cplogecg + cylogec, + 3log ( ey ) + acy log (;—E)]
VE v

Where, Ej = enthalpy of formation of a vacancy,

occ, = number of vibarional modes affected due to presence of
vacancies,

v, = Vibrational frequency of the affected modes due to vacancy,
ve = Vibrational frequency of the unaffected modes.

In compact form| we can write the above equation as:

F ns ng kT v
N:chf [ZCV”J“ ZZCCQU]+kT[ZCIOgeC +3/og(h E)Jr(xcvlog(vf)]

i=1j= 1=

= Number of species present in the system (A,B, V).
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With interstitials:

F ¢ L kT
N:;;lc; [ZCV,,Jr ‘Z’IJZCCQ,J]—I—kT[ZCIOgeC +3!og(ﬁ)
VE
+Z (XjCj/Og(—)]
j= Vi

where, Q;; = 2V — Vi + Vj;,

ng = Type of defects in the system (V/,laa,lBB,/4B),

ns = Number of species in the system (A, B,V ,laa,l85,/a8),

ajc; = Number of vibrational modes affected because of j* defect ,
v; = Vibrational frequency of the affected mode due to ;" defect.
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Oxide materials (MO.,)

— Vacancies and interstitials on 2
sublattices

— Anti-site defects
— Substitutional gas or metal atoms

> Point defects

Hochrainer, El-Azab
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— DIS|OcatIOn IOOpS, VO|dS, grain . Microstructure 'I:l ‘O .
boundaries, precipitates, etc. o O o 0o
ﬁ O o O
. O O
— Complex free energy expression; ® O .‘
complex kinetics of diffusion and O ‘o T O ® O
reactions o P25 0¥ o
® O o O
— Electrostatic and stress fields © ©O ©
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Preliminary model for MO,

Free ener VN PS¢ NS¢ Vo aimY (N £ AT U \
naioney . F = f [hf;mL\-Jéteﬂ-cﬁ+:‘-ufinc:f.f?,u+JL?:J(:‘-af§LcE~f?J+:\-uf;‘;(f§?.c?JJ

(Ny + No)&
Mr{;m? + E.|dV

Na Ny Ny
Vo \Geof? + NS v+ T g 4 ey 4 Tt

Defect energy

5 = SE;+clEY 4+ kD [ef In(el) + ¢l In(ef) + (1 — e — ef ) In(l — e — )] i = (e — 1}2 + afg
fo = GBI+ PEP 4+ kT [ () + ¢ In(ef) + (1 — ) In(l — ¢ — o)) fo— (124
el 1 OF
a—;‘ = V. (U ?—@) + Py — R (5. e8.m)
0cf L OF e
Kinetic 5 = V- (U V- ) + B — Ry (ep,cf.m) o 1 aF
equations dett 1 aF ot~ “Ny,+N, o th
ﬁ—; = V. (1 @c‘“) + P — Ry, (el cif.m,
act 1 aF
;; = V. ( I“"G’——) + P — R (el elon)
Subsidiary electrostatic problems
o (r) ,
E. = %/ é(r) p(r)dV p(r) = quep(r) Ny + qi'ef (r) Np + gy ey (1) Ny + gi'cf (r) Ny —%—‘?zcﬂﬂr} =0
2/, 0
Subsidiary elastic problems Eigen strain problem
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Summary

Phase field models have been developed for a range or
irradiation problems.

Initial results show that the approach is very promising.
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