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ACRONYMS
Acronym Definition

ASTEC Accident Source Term Evaluation Code

AVR Arbeitsgemeinschaft Versuchs-Reaktor

BDBE Beyond Design Basis Event

BE Best Estimate

CB Core Barrel

CBCS Core Barrel Conditioning System

CCS Core Conditioning System

CEDE Committed Effective Dose Equivalent

CFD Computational Fluid Dynamics

CFR Code of Federal Regulations

CIP Core Inlet Pipe

CMIV CCS Main Isolation Control Valve

COP Core Outlet Pipe

CPA Containment Part of ASTEC

CR Control Rod

DBA Design Basis Accident

DBE Design Basis Event

DCFs Dose Conversion Factors

DDNs Design Data Needs

DEGB Double Ended Guillotine Break

DLOFC Depressurized Loss of Forced Cooling

dp Pressure Difference

DPP Demonstration Power Plant

DR Delayed Release

DVS Depressurization Vent Shaft

DVSE Depressurization Vent Shaft East

DVSW Depressurization Vent Shaft West

EAB Exclusion Area Boundary

EBS Equivalent Break Size

eDCF effective Dose Conversion Factor

EDE Effective Dose Equivalent

ENV. Environment

EPA Environmental Protection Agency

FHL Filter House Level

FHSS Fuel Handling and Storage System

FIP Filter Inlet Plenum

FPY Full Power Years
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Acronym Definition

FR Fraction Open

GRS Gesellschaft fiir Anlagen und Reaktorsicherheit mbH

He Helium

HPB Helium Pressure Boundary

HPS Helium Purification System

HTGR High Temperature Gas-cooled Reactor

HVAC Heating, Ventilation, Air Conditioning

ICDS In-core Distribution System

IFI Initial Fuel Inventory

IHX Intermediate Heat Exchanger

IR Initial Release(from fuel)

IRSN L'Institut de Radioprotection et de Stireté Nucléaire

LB Lower Bound

LBEs Licensing Based Events

LWR Light Water Reactor

MFT Maximum Fuel Temperature

MHTGR Modular High Temperature Gas-Cooled Reactor

NGNP Next Generation Nuclear Plant

NHSS Nuclear Heat Supply System

NRC Nuclear Regulatory Commission

PAG Protective Action Guides

PBMR Pebble Bed Modular Reactor

PCS Power Conversion System

PHTS Primary Heat Transport System

PRA Probabilistic Risk Assessment

PRS Pressure Relief System

PSID Preliminary Safety Information Document

RB Reactor Building

RBVV Reactor Building Vent Volume

RCCS Reactor Cavity Cooling System

RCS Reactivity Control System

RIT Reactor Inlet Temperature

RLC Reactor Lower Cavity

RN Radionuclide

ROT Reactor Outlet Temperature

RPV Reactor Pressure Vessel

RRB Remainder of Reactor Building

RTC Reactor Top Cavity

SAS Small Absorber Sphere
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Acronym Definition
SEGB Single Ended Guillotine Break
SFR Shear Force Ratio
SG Steam Generator
SHTS Secondary Heat Transport System
SIP Stack Inlet Plenum
SSCs Systems, Structures and Components
TEDE Total Effective Dose Equivalent
TII Total Initial Inventory
TRISO Triple Coated Isotropic
UB Upper Bound
X/Q Weather Dispersion Factor

Note: SI units and radionuclide identifiers have been excluded from this list. Acronyms or
abbreviations used in figures which have legends are not necessarily included in this list.
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PLANT LEVEL ASSESSMENTS LEADING TO FISSION
PRODUCT ALLOCATIONS

SUMMARY AND CONCLUSIONS

SUMMARY

The work documented in this report includes studies to determine the steady-state plant
conditions and plant response during expected transients for the Next Generation Nuclear Plant
(NGNP) (Section 1), studies to evaluate the radionuclide (RN) releases from a spectrum of leaks
and breaks in the Helium Pressure Boundary (HPB) of the Primary Heat Transport System
(PHTS) (Section 2) and the development of design targets for radionuclide barrier retention
capabilities to guide the next phase of the design (Section 3). The design basis for the work is
the 500 MWt PBMR NGNP at 750°C ROT and 280°C RIT, powering a steam cycle through a
Secondary Heat Transport System (SHTS) helium loop.

In the normal operation steady-state and expected transient evaluations, it is shown that
all steady-state operating conditions and transients postulated are in principal achievable with
careful design of the plant control strategies and the Core Conditioning System (CCS). Notable
in the steady-state cases is the trade-off in size requirements for the CCS between the pressurized
and depressurized shutdown states. In the pressurized case, the CCS should ideally be smaller to
prevent over-cooling of the core. However in the depressurized state, a larger CCS may be
required to ensure sufficient cooling of the core and to prevent buoyancy effects in the reactor.
Engineering solutions will have to be applied to balance these two requirements. For the normal
operation start-up and shutdown transients, the main concerns are maintaining the SHTS
pressure above that of the PHTS and ensuring that the pressure difference between the primary
and secondary sides of the Intermediate Heat Exchanger (IHX) remains within its limits. Control
strategies to address these concerns are outlined in this document.

The evaluation of RN releases and offsite doses from HPB breaks refines the previous
reactor building (RB) study of 2008 [1] in terms of the analysis performed. In the previous
study, it was shown that a small break depressurized loss of forced cooling (DLOFC) resulted in
greater RN releases from the PHTS to the reactor building (RB), greater RN releases from the
RB to the environment and correspondingly greater offsite doses than a medium sized break.
This is due to the fact that the majority of the delayed RN releases from the fuel occurs after the
blowdown is complete for the medium break at which time only a minimal driving force exists to
transport the radionuclides (RNs) from the PHTS to the RB. In the case of the small break, the
blowdown is still in progress when the majority of the delayed RN releases from the fuel occurs,
providing an enhanced transport mechanism for RNs from the PHTS to the RB. The current
work has confirmed this RN PHTS release behavior for small and medium break depressurized
loss of forced cooling (DLOFC) events. In addition, the current work includes the effect of
convection cooling in the core during the depressurization for the small breaks, which was
previously not modeled and leads to lower DLOFC temperatures and hence lower delayed RN
releases from the fuel. This, coupled with the lower Reactor Outlet Temperature (ROT) in the
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current design leads to much lower RN releases from the fuel than in the 2008 RB study [1]. As
a result, where the previous study indicated that a RB would be necessary for RN retention, the
current study shows offsite doses below the required limits even without taking RB retention into
account based on the best estimate release and dose analysis performed in this study. Inclusion
of RB retention provides additional margin to the dose limits.

Modeling of the helium and air gas exchange between the PHTS and RB showed that
PHTS air-ingress post-blowdown for a medium size break is minimal. It also indicated that the
volume of the compartment in which the break occurs has a major effect on the air ingress
amount. Corrosion sensitivity studies indicated that the corrosion expected for these ingress
scenarios is minor compared to the total graphite in the core. It is noted, that the helium/air gas
exchange and corrosion results are only a first approximation and that verification of these
results is required using detailed computational fluid dynamics (CFD) analyses which was not
part of the scope of this work.

Detailed multi-compartment modeling of the Reactor Building (RB) including leakage
paths showed much higher RN retention factors than were expected from the previous study. It
was however shown that the form of the RNs in terms of dust, vapor and aerosol is of major
importance for this retention. This is an area that requires further investigation. The modeling of
a detailed RB also allowed this study to better investigate the effects of RB leakage pathways on
the final offsite doses. Some counter-intuitive behavior was observed in that closing of the
Depressurization Vent Shaft (DVS) damper after the blowdown phase actually increased the total
offsite doses even though the total RN releases from the RB were reduced relative to the case
when the DVS damper remained open. This behavior is attributable to the differences in the
effective dose conversion factors for elevated DVS releases compared to ground level releases
which differ by an order of magnitude.

The barrier retention capability targets were developed for the fuel, PHTS HPB, and RB
barriers, as well as a target for composite retention capability of all three barriers. These
allocations are presented in Table 1. Based on the offsite dose uncertainty analyses, the degree of
confidence in which the barrier retention capability targets are achievable and the margin to
offsite dose requirements is also identified.

Table 1 RN Retention Barrier Design Target Allocations
for NGNP Conceptual Design

Parameter Mean 5%tile | 50%tile | 95%tile
Fuel Release Fraction 2.05E-05 | 2.68E-07 | 4.10E-06 | 7.87E-05
PHTS HPB Release Fraction 440E-01 | 1.47E-01 | 4.19E-01 | 8.00E-01
Reactor Building Release Fraction 1.73E-02 | 1.34E-03 | 1.31E-02 | 4.68E-02
Composite Three Barrier Release Fraction 1.64E-07 | 4.73E-10 | 1.86E-08 | 6.00E-07
I-131 Release to Environment - Curies 2.12E+00 | 6.05E-03 | 2.39E-01 | 7.81E+00
Margin Factor to 5rem Thyroid CEDE PAG Limit [Note 1] 1.85E+02 | 7.77E+04 | 1.67E+03 | 4.99E+01
Margin Factor to 25rem TEDE DBA Dose Limit [Note 1] 1.16E+04 | 4.99E+06 | 1.06E+05 | 3.14E+03
Note 1: These values are obtained by dividing the dose limit by the corresponding percentile of the dose
uncertainty distribution; hence the higher doses have lower margins to the limit
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Barrier retention factors are design targets to guide the next phase of the NGNP design
and are not to be confused with regulatory requirements. Demonstration that regulatory
requirements can be met is outside the scope of the current study and will require more detailed
definition of the design and a comprehensive probabilistic and deterministic safety analysis
planned for future NGNP design phases.

The evaluation of barrier performance and barrier allocations should be updated for each
future design stage to maintain adequate margins against dose limits.

CONCLUSIONS

Conclusions from Section 1; Plant Level Analyses for Normal Operation and Anticipated
Transients

In general, the analysis has indicated two important factors that must be considered in the
design. Firstly, it indicates that very careful design of the control strategies is necessary to
ensure that the pressure of the SHTS remains higher than the pressure of the PHTS and that the
pressure difference between the primary and secondary side of the IHX remains within limits.
Secondly, the CCS has to be sized carefully to ensure it can supply the flow needed for the
depressurized shutdown while not exceeding the maximum flow for the pressurized case.

e Additional conclusions from the steady state results are:

o Normal operating condition: The desired operating point is achievable with the
current plant layout.

o Lower operating condition: In order to prevent the necessity of inventory control, the
pressure bias on the IHX can be maintained by lowering the hot gas temperature in
the NHSS and maintaining the cold gas temperature. Alternatively, additional
preheating of the feedwater can be applied. The recommended and simpler option is
the lowering of the hot gas temperature.

o Shutdown (PCS heat sink): The ROT can be maintained at the required level by
adjusting the water flow through the SG. It must be verified that the SG can be
operated with this low water flow (about 3% of the flow at full power) under these
conditions. The low water flow rate is not expected to be a problem, since no boiling
is required at this stage.

o Shutdown (CCS heat sink): To prevent the RIT and ROT from dropping below
acceptable limits, either the CCS mass flow can be throttled further by using a fine
control valve in parallel with the CMIV, or a bypass for the CCS heat exchanger can
be implemented. The fine control is recommended because a CCS cooler bypass
valve will receive gas in excess of 700°C and would therefore be classified as a hot
valve. The CCS heat exchanger size cannot be reduced as it must be sized for the
depressurized condition.
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o Depressurized condition: Although the ROT obtained is higher than the original
requirement, a bigger problem may be the very small mass flow rate through the
reactor. The minimum mass flow rate needed to prevent buoyancy effects in the
reactor must be determined and, if required, the CCS circulator size can be increased.
It must be kept in mind, however, that the pressurized shutdown condition would also
be affected by this.

e The conclusions and recommendations from the start-up transition analysis are:

o The main concern during the start-up is the sudden change in pressure on the
secondary side of the IHX the moment the SG water flow is started (which
furthermore causes the pressure in the SHTS to drop below that of the PHTS). This is
due to the fact that the preheating of the feedwater was not activated at this stage
(feedwater temperature is still 35°C). The dip can be lessened by starting to heat the
feedwater before the water flow is started.

o The pressurization of the start-up takes about 11 hours (almost half of the total start-
up time) at the assumed injection rates of 0.1kg/s into the PHTS and 0.15kg/s into the
SHTS. The exact injection rates that can be achieved must still be verified, which will
impact the start-up time.

o It is recommended that the injection rate ratio of the PHTS and SHTS be chosen such
as to ensure that the pressure of the SHTS stays above that of the PHTS during
pressurization.

o With the start-up strategy used in this analysis, the PHTS and SHTS circulators are
only started once full inventory is reached. The total start-up time can possibly be
reduced by starting up the circulators whilst pressurizing, thus starting to heat up the
system whilst pressurizing.

e The conclusions and recommendations for the shutdown transition are:

o The SG helium outlet temperature dropped quickly the moment the SHTS circulator
was switched off, causing the pressure in the SHTS to also drop sharply to below that
of the PHTS. This drop in temperature and pressure can possibly be reduced by
ramping down the SHTS circulator speed at a slower rate.

o The temperature of the RIT did drop slightly below 50°C (minimum reached was
about 44°C), but due to the pressure being quite low at this stage, it is not expected to
be a problem. Depressurization can however be started sooner (whilst the
temperatures are still relatively high) to increase this minimum temperature reached.

o The assumed extraction rates of 0.1kg/s for the PHTS and 0.15kg/s for the SHTS
must still be verified and the impact of faster or slower rates on the minimum
temperatures reached must be investigated.
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Conclusions from Section 2: Plant Level Analyses for PHTS Helium Pressure Boundary

Leaks and Breaks

e From the PHTS and RB analysis it was shown that:

O

The longer blowdown time for the small break results in a significantly greater
percentage of the delayed RN release from the fuel being transported to the RB.

Significant retention of dust and fission products occurs in the RB especially in the
RTC and IHX compartments.

Air intake to the RB through the leakage paths provides an additional driving force
for release through the stack.

Closure of the stack damper significantly reduces the stack release and increases the
leakage release for the 4mm break. The reduction in stack release is less for the
100mm break because the contribution of the initial release that is attached to dust is
more significant and unaffected by the damper closing.

Releases from the RB are very sensitive to assumptions made regarding the form of
the RNs entering the RB (aerosol or gas).

The helium fraction in the RTC and IHX compartments increases to dominant levels
reducing the density and thereby affecting the pressure difference between
compartments.

The surface areas of the compartments within the RB play a significant role in the
cooling of the gas which also influences the pressure in the compartments.

It was observed that temperature and density effects are important in the evolution of
the flows in the reactor building. Counter intuitive behavior can occur due to the
pressure and density effects induced by the lower density helium gas.

Note should also be taken in the design that a multi compartment RBVV will retain
more RNs than a single compartment RBVV.

Further nodalization of the IHX and RRB compartments would be useful to
investigate buoyancy effects that were not included in this study but may contribute
to the RN releases.

» The key conclusions of the dose evaluation include the following:

O

O

O

Minimum ratios of the PAG thyroid CEDE limit to calculated dose:

= 2.5 for the 4mm no RB retention cases, Case 1a(4)
= 47 for the 4mm RB retention cases, Case 3a(4)

Minimum ratios of the NRC TEDE limit to dose:

= 180 for the 4mm no RB retention cases, Case 1a(4)
= 3500 for the 4mm RB retention cases, Case 3a(4)

No RB retention is required to meet dose limits based on realistic assumptions used in
this study.
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o The RB retention cases included in this study reduce the offsite doses by 1 — 6 orders
of magnitude relative to the no RB case providing additional margin to limits

o Assumptions made about the RB response and characteristics of the source term
greatly influence the offsite doses.

= (ases in which the DVS damper recloses have higher doses than when it
remains open due to the increase in ground level releases for these cases.

= (Cases with DVS filtration result in the same (for the 4mm vapor cases) or
lower doses (for all other cases) especially for cases in which the non-dust
RNs are assumed to be in aerosol form.

= (ases in which the non-dust RNs are assumed to be in vapor form as opposed
to aerosol form have higher doses. Significant RB deposition occurs for RNs
assumed to be in aerosol form.

o Dose is more sensitive to ground level releases than DVS stack releases due to the
50m stack influence on X/Q.

o For each comparable case, the 100mm break dose is one to four orders of magnitude
less than the 4mm break dose. Results confirm 2008 RB study results that longer
blowdown time for the small break results in a significantly greater percentage of the
delayed RN release from the fuel being transported to the RB and accordingly greater
doses.

o Differences in trends for the 4mm and 100mm cases are a result of the larger
contribution of the initial release that is attached to dust to the total dose in the
100mm cases. The RNs that are attached to dust do deposit in the RB and are
filterable when released through the vent shaft

= For the 100mm vapor case when the damper remains open, filtration reduces
the doses, 20% for the thyroid CEDE and by a factor of 5 for the TEDE. For
the 4mm vapor cases, filtration has no effect on the overall doses.

= The reduction in doses is significantly larger between the RB vapor case with
open damper and the no RB retention case for the 100mm case than for the 4
mm case.

= The opposite is true for the reduction in doses for the RB aerosol case with
open damper. The 4mm shows a greater reduction in doses relative to the no
RB retention case.

e It is obvious from the results that the forms of the RNs in the RB play an important part
in the retention and filtration. Experimental investigation into the form of the RNs (vapor
/ aerosol) as well as the adsorption to dust is therefore important.

Conclusions from Section 3; Radionuclide Barrier Retention Allocations

The following conclusions and insights from the Barrier Allocation task will shape future
design phases of the NGNP:

» Barrier retention factors are design targets to guide next phase of NGNP design; not to be
confused with regulatory requirements.
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o There is an expectation that barrier retention capabilities will be evaluated in the next
design phase and changes are expected due to:

o Design changes and greater level of detail in design

o Improvements in state of knowledge due to improved and more detailed models and
data

o More complete evaluation of HPB break sizes, locations, and plant response
scenarios; treatment of more radio-nuclides; limiting scenarios to set allocations
likely to change

» Barrier retention allocations may change as design is optimized to maintain margins
against limits

e Margins to limits may be reduced if warranted by reduced uncertainties in performance

» Barrier allocations completed are based on HPB break size and location expected to be
limiting for design basis events for an assumed set of boundary conditions defined in this
section

e RN retention allocation for reactor building, a factor of 10 reduction in source terms for I-
131 and Cs-137, have been enhanced in this study by factor of more than 5 relative to that
specified in the 2008 RB study [1]

e RN retention allocation for the HPB is rather limited for small breaks but it is important
to include to demonstrate barrier defense-in-depth capability; HPB barrier retention is
more significant for larger breaks due to lack of pressure driving force during delayed
fuel release based on the 2008 and 2009 study results

» RN retention allocation targets for the fuel augments the fuel performance specification

e Thyroid PAG dose dominated by delayed fuel releases at ground level from RB that
occur post-blowdown after DVS damper is closed

* Methodology for evaluating barrier performance and barrier allocations should be
updated for each future design stage to maintain adequate margins against dose limits

It is rather noteworthy that the potential releases during the post-blowdown phase of the
4-mm DLOFC were found to dominate the results and provide the limiting conditions for
determining the barrier allocations. This is noteworthy because in the point estimate evaluations
provided with the computer models in Section 2, there is no release predicted from the HPB into
the RB following blowdown for the 4mm break because the core temperatures are decreasing
and the PHTS helium is contracting during this period. It is noted however that in the point
estimate analysis, RN transport from the RB to the environment continues post-blowdown and
makes a significant contribution to the dose. In the uncertainty analysis, based on engineering
judgment, some RN transport into the RB was postulated due to phenomena such as diffusion
and natural convection that were not modeled in the computer programs. These RNs had been
released from the fuel in the computer simulations but were retained in the PHTS due to lack of a
modeled transport mechanism. This insight points to the importance of future work to resolve
the uncertainties associated with gas-exchange phenomena.
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INTRODUCTION

The work detailed in this report is aimed at providing a refined analysis of source term
and fission product transport for a reference PBMR NGNP plant design. The study contributes to
the ultimate goal of the development of radionuclide (RN) design criteria for Licensing Based
Events (LBEs) that will assure compliance with top-level regulatory requirements.

The work is divided into three sections:

Section 1 (Plant Level Analysis for Normal Operation and Anticipated Transients) covers
analysis of initial plant conditions and expected transients in normal operation of the NGNP. The
primary objective is to describe the development of an integrated plant model of the Nuclear
Heat Supply System (NHSS) and the application of this model to establish operating conditions,
modes and states, and plant transient conditions during expected frequent start-up and shutdown
transients and mode transitions.

Section 2 (Plant Level Analysis for PHTS Helium Pressure Boundary Leaks and Breaks)
evaluates the radionuclide releases from a spectrum of leaks and breaks in the Primary Heat
Transport System (PHTS) Helium Pressure Boundary (HPB). The primary objective of this
section is to make significant progress toward the capability to calculate mechanistic source
terms for release of radioactive material from the reactor building for a representative small
(1mm to 10mm Equivalent Break Size (EBS)) and medium size (100mm EBS) HPB break
accounting for the relevant phenomena expected to be significant for the PBMR NGNP design.
A secondary objective is to revisit the conclusions of the 2008 RB study [1] based on an
improved capability to predict mechanistic source terms than was possible previously. Where
possible analysis is performed using more realistic models than were used in the 2008 study.
Greater realism is expected in the current study related to the following source terms aspects:

e Modeling the feedback on core thermal responses and resulting delayed fuel releases
created from the partially pressurized conditions for small breaks. The 2008 RB
study [1] ignored this effect and thus over-predicted the magnitude of the delayed
release from the fuel into the PHTS circuit.

e More realistic model of the coupled thermo-fluid behavior of the depressurization of
the PHTS into the RB and from the RB to the environment over the full range of HPB
break sizes in the CIP.

In Section 3 (Radionuclide Barrier Retention Allocations), design targets for radionuclide
retention capabilities of the barriers to radionuclide release are developed for the next phase of
the NGNP design. These barrier retention capability targets are developed for the fuel, PHTS,
and RB barriers. These design targets are derived from a quantitative uncertainty analysis of the
mechanistic source terms and radiological doses whose best estimate analysis is covered in
Section 2. The uncertainty analysis provides a basis for identifying key sources of uncertainty
that are candidates for future Design Data Needs (DDNs).
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1. PLANT LEVEL ANALYSES FOR NORMAL OPERATION
AND ANTICIPATED TRANSIENTS

This section describes the development of an integrated plant model of the NHSS. The
integrated model was used to develop steady state conditions and to analyze plant transitions as
part of normal operation, as well as to test the plant control and operating philosophy. This
model was also used to model the effect of a series of pipe breaks on the NHSS and the reactor
building, which served as a starting point for the fission product release calculation chain. The
pipe breaks are described in Section 2.

In the sections that follow, the thermal hydraulic analysis code, the model development and
integration are described. Steady state operation is then summarized followed by definitions of
the assessed transitions.

1.1 DESCRIPTION OF THE INTEGRATED NHSS MODEL

The thermal hydraulic code Flownex [3] was used to develop an overall integrated model of
the NHSS. Flownex is a thermal fluid network analysis code that uses the basic principles of
mass, momentum and energy conservation to numerically solve a network of interconnected
elements. The code can solve steady state equilibrium, as well as transient conditions. The
Flownex code was also used to model the PBMR Demonstration Power Plant (DPP) Main Power
System.

The purpose of a plant level model of the NHSS is to capture the integrated system dynamic
response based on plant control and component interaction. This is necessary to assess the plant
behavior and control philosophy. A representation of the NHSS configuration modeled in
Flownex is shown in Figure 1-1.

The integrated model contains a detailed component model of the Intermediate Heat
Exchanger (IHX), based on the results of the Intermediate Heat Exchanger Development and
Trade Studies task [2]. In addition to the IHX, the model includes the reactor, circulators, check
valve, piping, Steam Generator (SG), Core Conditioning System and all interconnecting pipes.
All components were modeled to second order level, which implies performance characteristics
that allow for off-design conditions, realistic thermal capacitances, heat losses and gas
inventories. The steam cycle was not modeled explicitly; realistic boundary conditions were
assumed for the feedwater and steam conditions. Since the plant transitions analyzed are slow
controlled transients, the assumption that these boundary conditions are controlled perfectly to
their required set points are valid.
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Figure 1-1 NGNP plant configuration analyzed in Flownex

It is important to note that the model has some limitations. Although the thermal capacitance
of the IHX and SG active heat transport area is included, the thermal capacitance of the vessel
internals is not included. This will, in reality, slow down the very fast temperature response of
the gas inside the vessel. Not taking these factors into account results in the prediction of higher
temperature spikes and increased gradients, which is conservative for most cases. Furthermore,
Flownex was not developed to solve networks at very low flows where natural convection takes
precedence. It will, however, induce flow due to buoyancy differences. Heat transfer
correlations suitable for very low flow conditions must be used to ensure that the calculated heat
transfer coefficients are in the right order of magnitude.

To perform the plant transitions described in the next section, plant controller models
were also developed. This ensured realistic transitions between the plant states.
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1.2 PLANT LEVEL ANALYSIS

The following plant-level analyses were performed:

e Steady-state heat balances for the upper, nominal and lower operating conditions, as
well as for the shutdown and depressurized maintenance conditions.
e Transitions between the following states:
o Start-up from depressurized maintenance conditions to full power operation.
o Shutdown from full power operation to depressurized maintenance conditions.
e Analysis of a spectrum of pipe breaks (presented in Section 2 of this report).

1.2.1 Operational States and Transitions/Transients

In order to proceed with the plant-level analysis task, a conceptual states and transitions
diagram was proposed. This is shown in Figure 1-2. The plant can be taken from one state to
another by following various paths indicated on this figure. The details and results of the states
and transitions analyzed will be described in the next few sections.

Page 24 of 166

NGNP-PLD-GEN-RPT-N-00007_Rev0.doc October 06, 2009



NGNP-PLD-GEN-RPT-N-00007 Next Generation Nuclear Plant: Plant Level Assessments
Revision 0 Leading to Fission Product Retention Allocations

Full Power Operation

A

Turbine or Circulator Trip (SG
Reactor Trip v and condenser isolated)

Reduced Power Operation

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
' Increase power Decrease power )
| 1
1 1
1 1
1 1
| 1
| 1
| 1
| 1
| 1
1 1
1 1

S U IS Shutdown_
: \4 JV A4 :
' . Shutdown Circulators . '
! Shutdown (PCS Heat Sink) » Shutdown (CCS Heat Sink) |
| Pressurized < Pressurized |
' Start-up Circulators !
' A A A !
Depressurize and p . d
shutdown ressurize and start- Pressurize Depressurize
circulators up circulators
r S jr_ T vy N

Fueled Maintenance —

Fuel Defuel Depressurized, heat sink through CCS Defuel| | Fuel

A 4

A

Defueled Maintenance —
Depressurized, heat sink through CCS

Figure 1-2: Operational States Diagram

1.3 STEADY-STATE CONDITIONS

The steady-state conditions that were analyzed with the Flownex model included the
following:

e Power Operation
o Full Power Operation - Nominal operating point (reactor at 100% power, full
inventory)
o Full Power Operation - Upper operating point (currently defined the same as
the nominal operating point)
o Reduced Power Operation - Lower operating point (reactor at 40% power, full
inventory)
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e Shutdown (Pressurized)
o Pressurized maintenance (heat sink through Power Conversion System)
o Pressurized maintenance (heat sink through Core Conditioning System)
e Fueled Maintenance (Depressurized)

1.3.1 Full Power Operation (Nominal Operating Condition)

This condition defines the reference case for all the analyses. The operating conditions
are defined as follows:

e 500 MW Reactor Thermal Power

e 750°C Reactor Outlet Temperature (ROT)

e 280°C Reactor Inlet Temperature (RIT)

e 9MPa helium pressure at the exit of the PHTS circulator

e 9.1MPa helium pressure at the exit of the Secondary Heat Transport System (SHTS)
circulator

e Steam conditions: 567°C, 16.9MPa.

e SG feedwater conditions: 163.7°C, 17.9MPa.

oSG water flow rate must be calculated to obtain the required steam conditions.

e 10% of the flow through the primary circulator must be diverted through the core

outlet pipe annulus to cool the core outlet pipe.

Further details are provided in Figure 1-3. For the purpose of this analysis, the upper
operating condition is defined as being identical to the nominal steady-state.

PHTS SHTS

4987.0 rpm 3258.0 rpm |
- ~ 14491.4 kWt 217.8°C 10465.2 kWt 208.2 °C :
PBMR 280.0°°C 1844kgls  280.0°C 280.0 °C 9100.0 kPa 87555 kPa ]
— L | 8939-2kPa 61.1mis 8970.7 kPa 9000.0 kPa <) 47.8 mis 1
Input - 470 s/ 164.0 °C :
1.0FO 266.6 °C 217.9°C 208.2°C 17959.7 kPa |
20.0 kgs| 8577.6 kPa 9085.3 kPa 8781.6 kPa ’ |
58.2 mis 1
© |
g 512.7 [ 523.1 MW, |

© '
4 Helium Water/ |
500.0 MWt Helium 5 IHX g inventory SG Steam |
4984w [ | | |AP=2345 kP sy h " 6298kg ;

o
4038 kg 3 3 :
749.8°C q 1
280.0 °C S 699.4 °C 567.0°C |
L L | |8935.3 kPa 8691.3 kPa : 8883.6 kPa 16900.0 kPa |
>
v

< 2053 kgs 1886 kgs
750.0 °C 204.5 kgls 93.9 m's !
\/ 8704.7 kPa 60.1 mis :
1

SG - Steam Generator
IHX - Intermediate Heat Exchanger
C - Circulator

Figure 1-3: Full Power Operation (Nominal/Upper Operating Point)
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The Flownex normal operation steady-state analysis indicates that the desired operating point is
achievable with the defined plant layout.

1.3.2 Reduced Power Operation (Lower Operating Condition)

This operating condition is defined as the lowest power operating condition at which
steam can be produced at its nominal conditions (although at a lower mass flow rate). When
operating at a reduced reactor power level, care should be taken that the pressure in the PHTS
does not increase above the pressure in the SHTS. Because the cold leg of the PHTS and SHTS
represents the largest portion of the helium volume in the system, the pressure in the two systems
are mostly determined by the temperature of the cold legs (provided the inventory remains
unchanged). At lower power levels, the SHTS can thus be maintained at a higher pressure using
one of the following methods:

e Lower the ROT to keep the RIT constant (preferred)

e Increase the feedwater temperature

e Active inventory control

Various permutations for the above were investigated. After evaluating the various
options, it is recommended to use the option where the ROT is decreased when the reactor power
is reduced. The proposed operating conditions for the reduced power condition are therefore as
follows (see Figure 1-4):

e 200 MW Reactor Thermal Power (40% of normal operation power)

e ~600°CROT

e 280°CRIT

e Steam conditions: 567°C, 16.9MPa.

Feedwater temperature is assumed to drop to 120 °C at 40% power; inlet pressure is

an outcome of the steady-state analysis

e The feedwater mass flow rate must be adjusted to obtain the required steam

conditions
e §8.74MPa in PHTS
e §8.76MPa in SHTS
o For these conditions, the SHTS pressure is only marginally higher than PHTS.

To increase this margin, it is recommended that the ROT be increased slightly
(which will increase the RIT and thus the SHTS pressure).

e Full inventory
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Figure 1-4: Lower Operating Point

1.3.3 Shutdown (Pressurized)

This condition is defined by the method of decay heat removal. The decay heat from the
reactor is taken 12 hours after the onset of shutdown. This value was calculated to be 2.581 MW.
The plant will be operating at the same helium inventory in the PHTS and SHTS as for the
nominal case. Heat removal can occur in one of two ways:

e Using the main loop (Power Conversion System (PCS)): The circulators will be at a
low speed (10%) and the feedwater mass flow rate will be at 20 — 25% of its nominal
flow rate. The feedwater inlet conditions will be at 35 °C (the Rankine circuit was not
simulated, thus an assumed value slightly higher than room temperature was used).

e Using the Core Conditioning System (CCS): The CCS circulator will remove all
decay heat from the reactor. The main loop circulators are off and the non-return
valve at the primary circulator outlet is closed. There is no water flow through the
steam generator.

The conditions for the shutdown state with heat removal through the PCS are given
below and on Figure 1-5:

e 150°CROT

e ~130°CRIT

e Circulators at 10% speed.

e Feedwater temperature 35°C.

e Feedwater flow rate is reduced to remove only the required heat.
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e 6.3MPain PHTS
e 6.6MPain SHTS
e Full inventory

PHTS SHTS
498.7 rpm 325.8 rpm 1
- ~ 15.8 kWt 13020c  AB3KWL 1209°C |
PBMR 1303°C 19.0 kgs 1303 °C 1303 °C 6550.1 KPa 6541.0 kPa !
o s :329-6 kPa 65ms 6330.3 kPa 6330.6 kPa ) 8.6 mis 1
T soc |
1.0FO 1301 °C 130.2°C 129.9°C T (]
2.0 kgls 6326.3 kPa 6549.6 kPa 6541.8 kPa : ]
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& < Helium Water/ |
2.6 MWt Helium = IHX R e SG Steam |
2.2 MWF APl 1 inventory ‘IT 1 6298 kg :
o
4038 kg g S 1
]
150.0 °C o ]
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L LI [ |6329.9 kPa 6327.9 kPa : 6544.2 kPa 16900.0 kPa |
-
J
< 332kgs S8kys )
150.0 °C 21.0 kg/s 8.9 m's |
\_/ 6327.9 kPa 3.5m's :
]

SG - Steam Generator
IHX - Intermediate Heat Exchanger
C - Circulator

Figure 1-5: Shutdown (PCS Heat Sink)

It can be seen in Figure 1-5 that the feedwater flow rate required is very low (only approximately
3% of the normal operations flow). This is expected to be acceptable considering that boiling is
not required at this stage. It should however be verified that the SG can operate under these
conditions.

The conditions for the shutdown state with heat removal through the CCS are given
below and on Figure 1-6:
e ~120°CROT
~50°CRIT
PHTS and SHTS circulators stopped
CCS circulator at 10% speed
5.5MPa in PHTS
Full inventory
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Figure 1-6: Shutdown (CCS Heat Sink)

It is important to note that for this state the RIT is very close to its minimum limit of 50°C. This
requirement originates from the reactor pressure vessel (RPV), to prevent radiation
embrittlement. To prevent the RIT from dropping below this limit, either the CCS mass flow can
be throttled further by using a fine control valve in parallel with the CCS main isolation control
valve (CMIV), or a bypass for the CCS heat exchanger can be implemented. The fine control is
recommended as a CCS cooler bypass valve will receive gas in excess of 700°C and would
therefore be classified as a hot valve. The CCS heat exchanger size cannot be reduced as it must
be sized for the depressurized condition.

1.3.4

Fueled Maintenance (Depressurized)

For this state the pressure of the PHTS and SHTS is set to atmospheric pressure. Decay
heat removal is facilitated by the core conditioning system (CCS) as illustrated in Figure 1-7.
The proposed operating conditions are:

The CCS circulator

will be set at its maximum speed to keep the ROT below 300°C

The CCS main isolation valve will be fully open and the CCS circulator bypass valve

will be fully closed to provide maximum flow through the reactor

Page 30 of 166

NGNP-PLD-GEN-RPT-N-00007_Rev0.doc

October 06, 2009




NGNP-PLD-GEN-RPT-N-00007 Next Generation Nuclear Plant: Plant Level Assessments
Revision 0 Leading to Fission Product Retention Allocations

e The primary circulator outlet valve is closed and the PHTS and SHTS circulators are
not in operation

e The decay heat from the reactor was taken one day (24 hours) after the onset of
shutdown. This was calculated to be 2.11 MW.

e ~250°CROT

e ~60°CRIT

It must be noted that for these conditions, the ROT could not be reduced further than
250°C using the CCS. The reactor mass flow rate is also very small (2 kg/s) which might cause
unpredictable flow patterns in the reactor and non-uniform temperature distributions. To obtain a
lower ROT and higher mass flow rates, the CCS circulator would have to be resized.
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- — 0.0 kg/s
PBMR 61.0 °C 0.4 kg/s 61.3°C @

102.6 kPa 6.9 /s 102.6 kPa AN\
Input < ©] { éj

|
-
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-60.9 m/
Helium Water/

21 Mt AP=1.6kPa Helium IHX inventory SG Steam
2.0 MWf 615°c| nventory
103.5 kPa ity

63.3°C
103.5 kPa 7.4mis

N B W

250.6 °C 2.0 kgls
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O K r 30.6 °C > f » IHX - Intermediate Heat Exchanger
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Figure 1-7: Depressurized Maintenance Condition
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1.4 STATE TRANSITIONS

The following two transitions were modeled:
e Start-up (from ‘Fueled Maintenance’ to ‘Full Power Operation’).
e Shutdown (from ‘Full Power Operation’ to ‘Fueled Maintenance’).

It is assumed that there is decay heat present during start-up, i.e. that the reactor has
previously run in power operation.

1.4.1 Start-up Transition

The full start-up transition (from ‘Fueled Maintenance’ to ‘Full Power Operation’) is
shown in red on the states diagram in Figure 1-8. It must be noted that there are more than one

start-up path that can be followed — the transition illustrated in Figure 1-8 is merely a proposal
that was analyzed.
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The different phases that were analyzed for the start-up are listed below:
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I
1
> Defueled Maintenance — < :
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Depressurized, heat sink through CCS !
Maintenance :

Figure 1-8: Start-up Path on States Diagram

PHASE 1 (Pressurize)
o The PHTS and SHTS are pressurized to full inventory (helium was injected at
an assumed rate of 0.1kg/s into the PHTS and 0.15kg/s into the SHTS).

o The CCS

removes the decay heat.

PHASE 2 (Start-up circulators):
o The main circulators are ramped up to full speed to heat up the reactor.

o The CCS

circulator reverts to idling mode.

o The SG is closed off (no water flow), thus the water pressure builds up to

16.9MPa

as the water heats up.

PHASE 3 (Start-up: 0 to 40% power):
o When the SG helium outlet temperature increase above 208°C (normal

operating point), the SG water flow is started and used to control SG helium

outlet temperature at 208°C.
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o The reactor is made critical at this stage and the reactor power is ramped up to
40% power. The reactor power is ramped up at such a rate the ROT will
increase at approximately 100°C/hr.

o The primary circulator speed is fixed at 40%.

o The RIT is controlled at 280°C using the secondary circulator speed.

e PHASE 4 (Increase power):

o The reactor power is ramped up from 40% to 100% power (again at a rate that
the ROT will increase at approximately 100°C/hr).

o The SG feedwater temperature is increased from 125°C at 40% power to
164°C at 100% power.

o The RIT is controlled at 280°C using the primary circulator speed.

o The SG helium outlet temperature is controlled at 208°C using the secondary
circulator speed.

o The steam temperature is controlled at 567°C using the water mass flow
through the SG.

o The steam pressure is maintained at 16.9MPa.

o The inventory is topped up to full pressure (the PHTS up to 9MPa and the
SHTS up to 9.1MPa) towards the end of this phase.

Some of the major results of the start-up simulation are presented in Figure 1-9 to Figure
1-11. As can be seen from Figure 1-11, whilst pressurizing, the pressure of the SHTS is lower
than that of the PHTS. This can easily be rectified by pressurizing the SHTS at a slightly faster
rate. The pressure in the SHTS furthermore sharply drops by more than 1 000kPa the moment
the SG water mass flow rate controller is switched on (this controller is used to control the SG
helium outlet temperature at 208°C). This is due to the fact that the SG feedwater temperature is
still cold (35°C), since the preheating had not been activated in the simulation. This dip in
pressure can probably be reduced by starting the feedwater heating sooner. From Figure 1-11 it
can also be seen that the SHTS pressure returns to above the PHTS pressure the moment the
feedwater temperature is increased to 120°C at the end of Phase 3 (thus the moment the
feedwater heating was started).

According to the analysis the whole start-up procedure takes about 24 hours to complete.

The majority of the time (11 hours) is used to pressurize the two circuits due to the low chosen
injection rate. If this injection rate is increased, the start-up time can be reduced significantly.
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Figure 1-9: Helium and Water Temperatures (Start-up)
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Figure 1-10: IHX Mass Flow (Start-up)
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Figure 1-11: IHX Pressure (Start-up)

1.4.2 Shutdown Transition

The full shutdown transition (from ‘Full Power Operation’ to ‘Fueled Maintenance’) is
shown in red on the states diagram in Figure 1-12.
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Figure 1-12: Shutdown Path on States Diagram

The different phases that were analyzed for the shutdown are listed below:
e PHASE I (Decrease power)
- The reactor power is ramped down from 100% to 40% power (by reducing ROT
at 100°C/hr).
- The PHTS and SHTS circulator speeds are used to control the cold temperatures
in the two circuits respectively.
- The feedwater flow rate is used to control steam temperature at 567°C.
- The feedwater temperature is reduced from 164°C at 100% power to 120°C at
40% power.
- The CCS circulator is in idle mode (at 10% speed).
e PHASE II (Shutdown)
- The ROT is further ramped down at 100°C/hr.
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- When the ROT drops below 330°C, the reactor is shut down by inserting control
rods at the maximum controlled insertion rate (1cm/s).
o PHASE III (Shutdown circulators)
- When the ROT drops below 300°C, the PHTS and SHTS circulators are stopped
and the circulator outlet check valve closes.
- The CCS circulator speed is ramped up.
- The CCS outlet check valve opens with positive differential pressure across the
valve.
- The CCS circulator speed is used to control the ROT ramp-down at 100°C/hr until
200°C is reached.
- The feedwater flow is stopped.
The ROT is stabilised at 200°C for 2 hours (using the CCS circulator speed).
o PHASE IV (Depressurization)
- The inventory is extracted until 200kPa is reached (helium was extracted at an
assumed rate of 0.1kg/s out of the PHTS and 0.15kg/s out of the SHTS).
- When the reactor mass flow rate dropped below 3kg/s, the CCS blower speed is
used to control reactor mass flow rate at 3kg/s.

The results of the shutdown transition are shown on in Figure 1-13 to Figure 1-15. From
Figure 1-15 it can be seen that the pressure of the SHTS drops quite suddenly the moment the
circulators are stopped. This pressure then remains below the pressure of the PHTS for the
remainder of the transient. This is due to the drop in temperature in the SHTS. When the
circulators are switched off, the mass flow in the SHTS drops to a very low value, thus the
approach temperature of the SG becomes much smaller. This causes the helium at the SG outlet
to get a lot closer to the water inlet temperature, which is 35°C at this stage. It must be
remembered that for this simulation, the circulator was not stopped totally. The change in
temperature therefore might look different if the circulators are totally stopped.

Towards the end of depressurization, the RIT dropped slightly below 50°C (the minimum
reached was about 44°C; refer to Figure 1-13). This is mainly due to the expansion of the gas
during depressurization. The minimum temperatures reached can be increased by starting
depressurization sooner while the temperatures are still higher. The minimum RIT of 44°C
reached is not expected to be a problem (radiation embrittlement of the RPV), since the pressures
are quite low at this stage (the pressure is about 1 800kPa when the RIT drops below 50°C and it
drops to about 200kPa when the RIT reaches its minimum of 44°C).

Similar to the start-up, an extraction rate of 0.1kg/s for the PHTS and 0.15kg/s for the
SHTS was assumed (requiring about 11 hours for blowdown). Higher extraction rates will ensure
an accelerated shutdown, but it might also influence the minimum temperatures reached due to
the quicker expansion of the gas during depressurization.
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Figure 1-13: Helium and Water Temperatures (Shutdown)
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Figure 1-14: IHX Mass Flow (Shutdown)
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Figure 1-15: IHX Pressure (Shutdown)

1.5 CONCLUSIONS AND RECOMMENDATIONS

In general, the analysis has indicated two important factors that must be considered in the design.
Firstly, it indicates that very careful design of the control strategies is necessary to ensure that the
pressure of the SHTS remains higher than the pressure of the PHTS and that the pressure
difference between the primary and secondary side of the IHX remains within limits. Secondly,
the CCS has to be sized carefully to ensure it can supply the flow needed for the depressurized
shutdown while not exceeding the maximum flow for the pressurized case.

The conclusions from the steady state results are summarized below.

e Normal operating condition: The desired operating point is achievable with the current
plant layout.

e Lower operating condition: In order to prevent the necessity of inventory control, the
pressure bias on the IHX can be maintained by lowering the hot gas temperature in the
NHSS and maintaining the cold gas temperature. Alternatively, additional preheating of
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the feedwater can be applied. The recommended and simpler option is the lowering of
the hot gas temperature.

o Shutdown (PCS heat sink): The ROT can be maintained at the required level by adjusting
the water flow through the SG. It must be verified that the SG can be operated with this
low water flow (about 3% of the flow at full power) under these conditions. The low
water flow rate is not expected to be a problem, since no boiling is required at this stage.

e Shutdown (CCS heat sink): To prevent the RIT and ROT from dropping below
acceptable limits, either the CCS mass flow can be throttled further by using a fine
control valve in parallel with the CMIV, or a bypass for the CCS heat exchanger can be
implemented. The fine control is recommended because a CCS cooler bypass valve will
receive gas in excess of 700°C and would therefore be classified as a hot valve. The CCS
heat exchanger size cannot be reduced as it must be sized for the depressurized condition.

e Depressurized condition: Although the ROT obtained is higher than the original
requirement, a bigger problem may be the very small mass flow rate through the reactor.
The minimum mass flow rate needed to prevent buoyancy effects in the reactor must be
determined and, if required, the CCS circulator size can be increased. It must be kept in
mind, however, that the pressurized shutdown condition would also be affected by this.

The conclusions and recommendations for the start-up transition are given below:

e The main concern during the start-up is the sudden change in pressure on the secondary
side of the IHX the moment the SG water flow is started (which furthermore causes the
pressure in the SHTS to drop below that of the PHTS). This is due to the fact that the
preheating of the feedwater has not been activated at this stage (feedwater temperature is
still 35°C). The dip can be lessened by starting to heat the feedwater before the water
flow is started.

o The pressurization of the start-up takes about 11 hours (almost half of the total start-up
time) at the assumed injection rates of 0.1kg/s into the PHTS and 0.15kg/s into the SHTS.
The exact injection rates that can be achieved must still be verified, which will impact the
start-up time.

e It is recommended that the injection rate ratio of the PHTS and SHTS be chosen such as
to ensure that the pressure of the SHTS stays above that of the PHTS during
pressurization.

e With the start-up strategy used in this analysis, the PHTS and SHTS circulators are only
started once full inventory is reached. The total start-up time can possibly be reduced by
starting up the circulators whilst pressurizing, thus starting to heat up the system whilst
pressurizing.

e A cold start-up still needs to be performed to determine how long the start-up will take if
all components are cold (at ambient conditions) and there is no decay heat present. It is
expected that the same start-up strategy can be used; the heat-up phase with the
circulators will only take a bit longer.

The conclusions and recommendations for the shutdown transition are given below:

e The SG helium outlet temperature dropped quickly the moment the SHTS circulator was
switched off, causing the pressure in the SHTS to also drop sharply to below that of the
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PHTS. This drop in temperature and pressure can possibly be reduced by ramping down
the SHTS circulator speed at a slower rate.

e The temperature of the RIT did drop slightly below 50°C (minimum reached was about
44°C), but due to the pressure being quite low at this stage, it is not expected to be a
problem. Depressurization can however be started sooner (whilst the temperatures are
still relatively high) to increase this minimum temperature reached.

e The assumed extraction rates of 0.1kg/s for the PHTS and 0.15kg/s for the SHTS must
still be verified and the impact of faster or slower rates on the minimum temperatures
reached must be investigated.
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2. PLANT LEVEL ANALYSES FOR PHTS HELIUM
PRESSURE BOUNDARY LEAKS AND BREAKS

This section evaluates the radionuclide releases from a spectrum of leaks and breaks in the
Helium Pressure Boundary (HPB) of the Primary Heat Transport System (PHTS) to determine
environmental dose rates and best estimate release fractions for the various RN barriers which
will be used in Section 3 to evaluate the RN barrier retention allocations.

Firstly, the NGNP plant design and the characterization of the leaks and breaks analyzed are
described. This is followed by a description of the calculation chain employed and the
calculation models created for each analysis. Finally the results for the analysis are described and

assessed.

2.1

NGNP PLANT DESIGN AND HPB BREAK CHARACTERIZATION

The analysis for the RN releases is based on the PBMR NGNP Steam Cycle with SHTS Helium
Loop. The major plant parameters, the break size and location selection as well as the plant
system responses assumed are outlined in the next sub-sections.

211

Summary of Major Plant Parameters

A summary of the major plant parameters that is used in the analysis of HPB breaks is

provided in Table 2-1.

Table 2-1 Summary of Major Plant Parameters and Assumed Design Features

Plant Parameter

Value

Plant Design Configuration

PBMR NGNP Steam Cycle with SHTS Helium Loop

Power Level

500MWth

PHTS Helium Pressure 9.0Mpa

RIT 280°C

ROT 750°C

Normal Operation PHTS Mass Flow Rate | 204.5kg/s

PHTS Volumes and Sub-Volumes Based on Flownex NHSS Model
PHTS Helium Inventory 4038kg

Initial Circulating RN Inventories Calculated

Distribution of Initial RN Inventory (gas- | Calculated

borne, dust, plate-out)

Modeled RB design features for pressure
relief, RB isolation, and RN filtration

Blow-out panels to relieve pressure between RB
compartments and to open Depressurization Vent
Shaft (DVS); DVS isolation dampers to re-close the
Pressure Relief System (PRS) relief shaft, filtration
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Plant Parameter Value

capability for releases out the relief shaft, no filtration
for other RB release pathways, RB leakage defined

RB and Reactor Building Vent Volume Ambient air with 50% humidity
(RBVYV) Initial Atmospheric
Composition

Site Boundary Distance 400 meters

The RB and RBVV were defined according to the latest NGNP building design. The schematic
layout analyzed is shown in Figure 2-1. Note that the two DVS were combined into one due to
an undesirable numerical solution issue, i.e. the formation of an artificial convection loop.

NGNP Block Flow Diagram
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Figure 2-1 Model of Reactor Building Volumes

2.1.2 Break Location

The analyses performed in this study cover a break location in the Core Inlet Pipe (CIP)
at the highest elevation above the core and at the top of the pipe located in the Reactor Cavity of
the Reactor Building. The location of the break is shown in Figure 2-2.

The choice of break location was based on the following factors
e Consistency with the 2008 study
e The core inlet pipe is the largest pipe with a single wall design
e Isolation is not feasible in this location
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e The elevated location was considered the highest potential for RB helium/air
ingress to the PHTS after blowdown

Flow during Pipe Break

RPV Pipe Break

COP Annulus
connection pipe

Gas cools due to expansion

Figure 2-2 Location of the HPB Break in the Core Inlet Pipe showing Break
Induced Flows

21.3 Selection of Break Sizes

For purposes of evaluating the thermo-fluid behavior of the depressurization of the PHTS
a range of HPB break sizes was considered from 2mm Equivalent Break Size (EBS) up to and
including a double ended guillotine break (DEGB) of the CIP. This pipe has an inside diameter
of 710mm and the EBS is thus 1000mm. For the purpose of evaluating the RN releases to the
environment and site boundary radiological doses, two break sizes were considered, one small
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break of 4mm that was selected to maximize the delayed releases from the fuel into the reactor
building, and one medium size break of 100mm EBS which is assumed to be the limiting design
basis event break size for event sequences involving Depressurized Loss Of Forced Cooling
(DLOFC).

214 Characterization of Plant System Responses

The following assumptions were made about the response of the plant systems to each
modeled HPB break:
e Reactor scram, PHTS and SHTS circulator trip and coast down at the first safety
grade scram signal. All control rods insert.

PHTS and SHTS circulator discharge valves close as designed

Core Conditioning System (CCS) fails to start

Helium Purification System HPS isolated from the PHTS HPB at t=0

Fuel Handling and Storage System (FHSS) remains isolated via the isolation

blocks; the He inventory in the non-isolated parts of the FHSS inlet lines. In-core

Distribution System (ICDS) line, Small Absorber Sphere (SAS) return lines are

assumed to be accounted for in the He inventory data (a very small fraction of the

PHTS inventory).

e Reactor Cavity Cooling System (RCCS) in permanent water boil-off mode: Heat-
up to 135 °C, then holds steady (assumes makeup from "firewater truck" after
boundary condition temperature is reached).

e RB Heating, Ventilation Air Conditioning (HVAC) system fails to cool or filter
RB atmosphere at t=0.

e No process controls except for scram and circulator trips.

e All RB blowout panels (Rupture Panels No. 1, 2a, 2b, 4a, 4b, 5a, 5b and 9) in
Figure 2-1 open at 5kPa forward pressure.

e The openings (No. 3, 7 and 8) in Figure 2-1 are normally open and stay open

215 Characterization of Reactor Building Responses

For each of the break size cases selected for RN analysis (4mm and 100mm EBS) four
different responses of the RB design features for isolation and filtration are modeled:
No filtration, DVS damper fails to open
No filtration, DVS damper closes at the end of blowdown
With filtration, DVS damper fails to open
With filtration, DVS damper closes at the end of blowdown
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2.2 RELEASE CALCULATION CHAIN AND CALCULATION MODELS

In order to perform realistic analysis of the PHTS break scenarios, a calculation chain
was evaluated. The detail of the flow of calculations, the codes used and the data that is passed
between them is provided in Figure 2-3.

The thermal-fluid behavior in the PHTS during the break transient is first evaluated using
the Flownex code. For the 100mm break case, the analysis is extended to include the evaluation
of PHTS and RB gas exchange behavior after blowdown. Using these results, the transient
neutron kinetics code TINTE determines the details of the reactor core behavior. GETTER then
uses the fuel temperature behavior and neutronic data to determine delayed releases from the
fuel. This information is passed to EXCEL1 which models the RN releases from the PHTS to the
RB. EXCELI also uses data on the normal operation source term to determine the initial RN
releases. This source term is based on results obtained from previous SPECTRA calculations as
well as from NOBLEG steady-state fission product release calculations. The ASTEC code then
uses the specification of the releases from the PHTS to model the RN distribution in the RB and
the releases to the environment, both from the DVS and specified leakage paths. Finally, the RN
releases determined are converted into offsite doses using the EXCEL2 model.

The following sections provide further details on each of the codes used and the models
that were developed for the analysis.

DLOFC ACCIDENT ANALYSIS FLOW CHART

Flownex

Temperatures, Pressures, Gas Concentrations &

Flow Rates from HPB to RB Vent Volume
Shear Ratios
Flow
TINTE ------~: Ratesd
! only
v
Transient Fuel & Gas Graphite
Temperatures, Thermal/Fast Corrosion
Neutron Fluxes Rates
GETTER / NOBLEG
A A
Transient SPECTRA
v Fuel Releases EXCEL 1 Steady Existing Calculations
State Dust,
ASTEC « | Plateout
RN Releases from HPB to RB Vent Volume and
Circulating
Activity

RN Releases from RB

EXCEL 2

Doses at Site Boundary

Figure 2-3 Flow Chart for the Radionuclide Release Calculation Chain
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2.2.1 Flownex

Flownex models the thermo-fluid behavior in the PHTS and its interaction with the RB.
The model provides pressures, gas concentrations and flow rates to TINTE and temperatures,

pressures, gas concentrations and flow rates to ASTEC and flow rates and shear force ratios to
the Excell model of the PHTS.

2211 Flownex Model Layout

The NGNP NHSS Flownex Model is shown in Figure 2-4 and is identical to the model
used in Section 1 of this study. In order to investigate the thermo-fluid interaction between the
PHTS and the RB the NGNP PRS Flownex Model (also referred to as the Reactor Building (RB)
Flownex Model) as shown in Figure 2-5 was developed. The PRS model consists of different
components:

. Free volume in compartments.

o Ducts or openings connecting compartments to relieve pressure through the
Depressurization Vent Shaft (DVS) and Filter House compartments to
atmosphere.

. Depressurization (rupture) panels to seal compartments during normal operation.

. Leakage paths from the IHX compartment to the remainder of Reactor Building
and further to the environment.

. Heat transfer through walls and roofs/floors between compartments.

The Flownex network layout of the PRS is done according to the different levels
(referring to heights) of the RB. The flow path is derived from the NGNP Block Flow Diagram
as depicted in Figure 2-1. To simulate a break that occurs in a certain compartment, the two
models are coupled via the “pipe break” element available in Flownex, as shown in Figure 2-6.
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Figure 2-5 Flownex presentation of the NGNP PRS model
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2.2.2 TINTE

TINTE determines the time dependent transient behavior of the core during the DLOFC
event. Using the pressure and flow rates provided by Flownex, TINTE calculates the core
response and provides the fuel temperatures as well as neutron fluxes to GETTER for the RN
release calculations.

TINTE has the ability to model corrosion due to air ingress, and this was used to evaluate the
possible effects of air ingress in the larger break case. Note that this investigation was performed
as a sensitivity study only and was not aimed to be directly included in the calculation chain.

2.2.21 TINTE Code

TINTE (Time Dependent Neutronics and Temperatures) is mainly used to model time-
dependent transients in HTGRs. These events can be slow (DLOFC over 24 hours, Xenon
oscillations over a few days), or fast (Control Rod ejection). The code provides transient
temperature data for core component design and design limits (fuel, reflectors, control rods, etc),
as well as fission and total power indicators.

TINTE implements the 2-dimensional (r-z cylindrical geometry), time-dependent neutron
diffusion equations, with a coarse mesh finite difference solver using 2 neutron energy groups
(3.07eV thermal cut-off) and 6 delayed neutron groups. Cross-section data, fuel element burnup
history and spatial isotopic distributions are supplied from the neutronics code VSOP99.

The thermal hydraulics solver determines the 2-dimensional heat transport in cylindrical
geometry. Gas and solid temperatures are calculated separately from the neutronic power. Fuel
element surface temperatures define the effective heat conductivity in the pebble-bed and the
convective heat transport.

2222 TINTE Model Layout

The general NGNP TINTE model layout is shown in Figure 2-7. The indicated geometry
is based on the latest PBMR NGNP design.
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Figure 2-7: General TINTE NGNP Model layout

The main coolant mass flow path enters the model at the upper void between the Core
Barrel and the Reactor Pressure Vessel, from where it flows downwards between the radial
components of the two SSCs, and then enters the riser channels from the bottom section of the
Core Barrel.

In accordance with the PBMR “design-to” philosophy on the treatment of bypass flow
modeling, the core bypass and leak flows were simplified to 3 flows, totaling 20% of the total
flow:

e Control Rod channel - 5.1 kg/s or 2.5% of the total inlet flow
e Reactivity Control System (RCS) channel - 4.1 kg/s or 2.0% of the inlet total flow
e Direct inlet-outlet bypass flow - 31.7 kg/s or 15.5% of the total inlet flow.
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For the model, the fast fluence exposure period on the reflector blocks was defined as 9
Full Power Years (FPY). All other material parameters were used at their best estimate values
(e.g. graphite and steel density, specific heat, conductivity and emissivity).

The 2009 500 MW DPP model utilized a Control Rod (CR) bank inserted position of 200
cm below the bottom of the top reflector (i.e. 122 c¢cm into the pebble bed region). This location
was based on a critical VSOP99 core configuration, coupled with a load-follow requirement of
100-40-100%. Since the load-follow requirements are assumed to be similar for the NGNP, the
rods were kept at this location in the TINTE model.

The VSOP99 code supplied the spatial isotopic distribution (i.e. number densities) and
decay heat data that is necessary for the TINTE steady-state calculation. A dedicated VSOP99
NGNP model has been created, and the TINTE tn4 file has been updated with the latest isotopic
distribution and decay heat data set

The boundary conditions are defined as follows:
e Reactor inlet gas temperature: 280°C.
e Reactor inlet mass flow rate: 204.5 kg/s.
e Reactor outlet pressure: 8.77 MPa.

2223 General Model Assumptions

The following general assumptions were made during the development of this model:

e The geometry of the TINTE model corresponds to the cold (room temperature)
dimensions of the reactor. The Z-axis expansion of the reactor due to linear thermal
expansion is small compared to the dimensions of the reactor along that axis, and it is
therefore acceptable to use the cold dimensions.

e The graphite side reflector blocks that have a flat inner and outer face in the radial
direction, have been approximated as curved surfaces on radii touching the mid points of
the inner and outer faces.

e The domed upper and lower shells of the RPV are being modeled as flat plates due to
modeling limitations in TINTE. This approach is made acceptable through the application
of the principle of conservation of mass on those RPV sections and also on the void
spaces enclosed by them.

e The TINTE model contains no metallic connections between the core barrel and the RPV,
i.e. the core barrel support, the control rod drive tubes and the SAS tubes are not
explicitly modeled. The only mechanism of heat transfer between the core barrel and the
RPV is therefore through radiative heat transfer. This approach will most likely lead to
conservative (higher) estimates of temperatures within the core barrel and the fuel
spheres.

e The control rod drive equipment, i.e. motors, tubes and chains, is not included in
calculating the mass of the upper domed lid of the reactor pressure vessel. The
assumption was also made that the top core barrel plate could be modelled as a solid
plate, i.e. that all the piping material above the core barrel top plate equates
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approximately to the volume of all the many holes in the core barrel top plate. Thirdly,
the volume of the SAS basket and container material is lumped to the RPV upper domed
section, and the core barrel support structure is lumped to the core barrel support plate.

e The upper and lower fuel core surfaces are approximated with flattened surfaces. The
upper flattened surface is located at the volume averaged surface of the fuel sphere peaks
and valleys. The fuel cones are also approximated on a volume averaged basis but with
flat surfaces stepped in over three axial levels to resemble the flow of pebbles towards the
de-fuel chutes.

e A special 10 mm radial contact zone is being used to model the interface of the fuel
pebbles with the centre- and side reflector surfaces. This approach is an optional
modeling feature available in TINTE for improved modeling of heat transfer in the
pebble to reflector contact zones, and has been shown in previous sensitivity studies to be
a required feature of any TINTE model.

2.2.3 NOBLEG/GETTER

NOBLEG and GETTER are codes used to analyze fission product transport from the fuel
into the coolant gas. NOBLEG determines steady-state fuel releases while GETTER calculates
transient behavior.

Fission products formed during the operation of a high temperature gas-cooled reactor
that are not completely retained in the uranium oxide kernel, may be released from the fuel
elements through failed coated particles and uranium and thorium contamination of the fuel
materials. Long-lived fission products may also diffuse through intact TRISO-particle layers
(albeit very slowly). Fission products are transported from their origin, the fission sites, through
the fuel materials to the surface of the fuel elements, where the fission products are desorbed into
the coolant gas.

Fission product transport through the material layers is dependent on two basic
theoretical models, first the transport process that describes the movement of fission products,
and second, the thermo-fluid model that determines material temperatures that influence the rate
of the first process. Both models are incorporated into the fission product release software
GETTER. The software product FIPREX acts as a wrapper around GETTER, creating input
files, controlling GETTER operation, and performing post-calculation data reduction of the
GETTER output.

Two physical models are applied when using the calculation model. Firstly the fuel
element model is based on German reference fuel made up of TRISO-particles embedded in A3-
3 graphite matrix material. Secondly, the reactor model is based on a spherical fueled HTGR
core design with a static central column as modeled by VSOP and TINTE (section 2.1.2.2).

This calculation model is based on German reference fuel and assumes that the fuel
utilized will be the same or better quality than German reference fuel. Therefore all transport and
fuel parameters as developed and determined by the German fuel program are used. The
calculation is performed for the best estimate or expected case using all best estimate input
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parameters and values. A sensitivity analysis is performed on all uncertain input parameters and
values to determine design limits.

There are three distinct sources of fission products in fuel spheres. A fourth source also
exists that is important only for activation products, the natural contamination of the activation
product precursor in the fuel materials. They are modeled as follows:

Uranium and thorium contamination of the fuel materials

This contamination is primarily in the matrix material of the fuel sphere and release of
fission products created by fissions of this contamination only have to diffuse through the matrix
material before being released. The contamination is expressed as an effective uranium fraction
of the total uranium and thorium content of a fuel element.

Defective and failed coated particles

A particle is considered failed or defective if its coating layers are absent or are damaged
sufficiently to allow the release of fission gases. Even under the best manufacturing conditions a
small fraction of coated fuel particles will be defective. Furthermore, under abnormally high
temperatures and power surges, coated fuel particles may start to fail. Statistical analyses of
German production fuel were used to determine PBMR-manufactured fuel failure fractions.
Further analyses of German fuel during irradiation and heat-up testing derived fuel failure versus
temperature expected curves and their uncertainty ranges. Phenomena that may influence coated
particle performance (amoeba effect, Palladium-SiC interactions, etc.) were included in this
evaluation.

Intact TRISO coated particles.

Intact coated particles are defined as particles that have all their coating layers intact, are
impervious to fission gas release, and release only a very small fraction of their 137Cs inventory.
Fission products are modelled to recoil from their fission sites and then to diffuse through the
fuel materials to be desorbed in the coolant gas.

224 EXCEL1

Releases of radionuclides (RNs) from the PHTS circuit out the HPB break and into the
reactor building (RB) were calculated using an Excel spreadsheet (EXCELT1 in Figure 2-3) in
which information from the Flownex results on the time dependent transport of helium mass into
the RB and the RN releases from the fuel into the PHTS developed by NOBLEG/GETTER were
used to calculate the time dependent releases of RNs into the RB. Radioactive decay is accounted
for in the PHTS.

The radionuclide inventory in the PHTS at the start of the transient was estimated using
the normal operation radionuclide release rates from the NOBLEG/GETTER calculations and
insights from previous NGNP mechanistic source term calculations. Results from a mechanistic
study for the current NGNP design were considered not to be achievable within the time and
budget constraints of this project. This approach is reasonable for the current study since only
break sizes (<100 mm) in which the shear ratios around the PHTS circuit are all less than 1.0
resulting in minimal liftoff/re-suspension are being considered. The RNs included in the
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EXCELI calculation all typically attach to dust or plate out during normal operation, therefore a
simplifying assumption was made that the normal operation radionuclide inventory is assumed to
all be attached to settled dust in the PHTS at the start of the transient.

The dust mass in the PHTS at the start of the transient is assumed to be the same as in the NGNP
Contamination Report [4]. The circulating dust mass at the start of the transient is 0.639 kg and
the deposited dust mass at the start of the transient is 1610 kg. The dust that is deposited in the
HPS filter is not included.

2241 Key Model Assumptions

The following key assumptions were made in the model:

e For the purpose of calculating the dust and radionuclide releases from the PHTS to the
RB, the entire PHTS, which includes the reactor vessel, Core Outlet Pipe (COP), CIP,
PHTS circulator, IHX and COP annular cooling circuit, and the helium inventory in the
Core Conditioning System (CCS) inlet is treated as only one fully mixed volume. The
total initial inventories of circulating dust and RNs are assumed to be uniformly
distributed in this one PHTS volume.

e Liftoff of initially deposited RNs and dust and RNs released from the fuel during the
transient are assumed to instantaneously and uniformly mix in the PHTS volume.
Therefore, the transport of the RNs released from the core to the break location is
neglected. The dust and RNs are then released in proportion to the helium released from
the PHTS to the RB.

e The particle size distribution of the dust to which the RNs that are released from the
PHTS are attached is not modeled.

e During each time step, the transient radionuclide fractional release from the PHTS to the
RB is assumed to be the same as the transient helium fractional release rate from the
PHTS to the RB.

¢ During each time step, the transient dust fractional release rate from the PHTS to the RB
is assumed to be the same as the transient helium fractional release rate from the PHTS to
the RB.

e The RNs that are circulating in the PHTS, either attached to dust or as free species that
are not attached to dust, remain circulating unless they are released from the PHTS to the
RB along with the helium as the PHTS depressurizes or heats following the
depressurization. Settling of the RNs in the PHTS after the start of the transient is
neglected.

e The RNs released from the fuel to the PHTS during the transient remain circulating and
do not become attached to dust and do not plate out throughout the transient.

e The RNs initially circulating in the PHTS that are not attached to dust and RNs that liftoff
from the metallic components in the PHTS remain circulating and do not become
attached to dust throughout the transient.

e The RNs initially circulating in the PHTS that are attached to dust and the RNs that are
circulating due to dust re-suspension remain circulating and attached to dust throughout
the transient.
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e Simplified models for the desorption of plateout and for dust re-suspension are assumed
and used for all RNs.

e The estimate of the normal operation radionuclide inventory in the PHTS at the end of
plant life neglects the removal by the Helium Service System during normal operation
and the production by means other than the release directly from the fuel pebbles.

e The radionuclide steady state release rate from the fuel to the PHTS is assumed constant
for the plant life.

2242 Calculation Assumptions

The following calculation assumptions were made:

e For the seven RNs included in the calculation (Ag-110m, Ag-111, Cs-137,1-131, 1-133,
Sr-90 and Te-132), the normal operation radionuclide inventory is assumed to all be
attached to settled dust in the PHTS at the start of the transient. Accordingly, the initial
radionuclide circulating and plateout inventories are all assumed to be zero and hence,
desorption of plateout is also assumed to be zero.

e The shear ratios during the blowdown for the leak sizes (< 100 mm) in the current study
are all less than 1.0. So a minimal dust resuspension is conservatively assumed for all
RNs of 0.2%.

e For the 4 mm break, zero release from the PHTS to the RB is assumed post-blowdown,
after 91 hrs. He-air ingress into the PHTS from the RB is assumed post-blowdown due to
thermal contraction.

e For the 100 mm break, the blowdown is complete in 11 min and release from the PHTS
to the RB continues until 50 hrs due to thermal expansion of the helium coolant in the
PHTS. From 0-3 hrs, the helium mass in the PHTS is taken directly from the Flownex
results. From 3-50 hrs, the helium mass is calculated from fitted Flownex flow rates
from the break to smooth out the oscillations in the Flownex results. After 50 hrs, zero
release from the PHTS to the RB is assumed as the start of He-air ingress into the PHTS
is indicated from the Flownex results.

e Release of helium and RNs from the PHTS to the RB due to buoyancy or convective
driven mechanisms after blowdown is assumed to be zero for both break sizes.

2.2.5 ASTEC

2.2.51 ASTEC Code Description

The ASTEC software, Version 1.3 Rev 2, CPA module was used. ASTEC (Accident Source
Term Evaluation Code) has been developed jointly over a number of years by the French group
IRSN (L'Institut de Radioprotection et de Stireté Nucléaire) and its German counterpart, GRS
(Gesellschaft fiir Anlagen und Reaktorsicherheit mbH). The aim of the code is to simulate an
entire LWR severe accident sequence from the initiating event through to the RN release out of
the containment.
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The CPA module used consists of two main sub-modules, THY and AFP, which simulate the
thermal-fluid and aerosol behavior in a containment. In ASTEC, the containment is discretized
through a “lumped-parameter” approach (i.e. volumes are represented by nodes connected by
junctions). This approach allows the simulation of simple or multi-compartment containments
with possible leakages to the environment or to normal buildings.

2.2.5.2 Reactor Building Model

Figure 2-1 shows the block flow diagram of the Reactor Building with the compartments to be
modeled indicated. Compartment volumes and areas as well as junction input data are specified
in Table 2-2 and Table 2-3. The rupture junctions can be seen, for example between the reactor
top cavity (RTC) compartment and the IHX compartment. Other junctions are open, atmospheric
junctions.

Table 2-1 also specifies areas for leakage paths from the IHX compartment to the remainder of
the reactor building (RRB) compartment and IHX compartment to Environment based on a
leakage rate of 50%/day at 0.1 bar-d. The leakage areas from the RRB compartment to the
environment are also specified based on leakage rates of 100%/d at 0.1 bar-d. Leakage areas
have been sized to give these leak rates by rewriting and solving the incompressible steady-state

momentum equation for the leakage area using a user specified flow resistance coefficient value
of 1.0.

Each compartment shown in Figure 2-1 was assigned to a single zone in ASTEC. No further
nodalization of the compartments was performed. In doing this the model assumes a
homogeneous state within one zone. This nodalization is sufficient for the short term behavior
where the main processes are driven by pressure differences but may prove to be insufficient in
modeling medium and long term behavior where slow convective motions, mainly buoyancy and
density driven, are dominant. Further nodalization is also motivated by potential inhomogeneities
in compartments such as significant temperature gradients within a compartment caused by
strong heat transport and very small flow rates, allowing weak processes to have local effects.

All compartments were implemented using the Non-Equilibrium zone option available in
ASTEC. In the Non-Equilibrium zone option, the zone is subdivided into two parts: the
atmosphere part similar to the equilibrium zone model and a sump part (if existing) specified by
the temperature and water mass. Between both parts heat exchange by convection and
condensation (or evaporation) correlations is possible. The choice of zone model is not
significant due to the gas injection being helium and due to there being no water present at the
start of calculation.

Page 61 of 166

NGNP-PLD-GEN-RPT-N-00007_Rev0.doc October 06, 2009



NGNP-PLD-GEN-RPT-N-00007 Next Generation Nuclear Plant: Plant Level Assessments
Revision 0 Leading to Fission Product Retention Allocations

2253 Input and Output

The thermal-hydraulic input was provided by the Flownex model whilst the dust and fission
product input was provided by Excell. The dust size distribution was based on the AVR size
distribution using 12 size classes.

Zones in ASTEC are defined by their floor area, volume, floor height and zone centre height.
The initial conditions of the zone such as the initial pressure, temperature and humidity need to
be specified. The initial temperature and humidity in the reactor building was specified as 20
deg C and 1.0% respectively. The value of humidity was chosen so as to ensure that pressures in
the reactor building zones could be calculated using the value of the density of air. The initial
zone pressures have been set according to the formula £ — Pa: -g+h(p,, =12kgm™) with and

P, =101.325kPa at ground level and 4 the height difference from ground level.

Table 2-2: Initial Conditions and Geometry of Reactor Building Compartments

Compartment * Initial Floor Centre Floor Total Heat Zone
Pressure Elevation Elevation Area Transfer Volume
(Pa) (m) (m) (ASTEC) | (m?) Surface Area (m?)
(ASTEC) (m?)

RLC 101355 0.1 11.5 82.0 707 736
RTC 101114 23.0 315 82.0 577 1184
COP2 101423 25 59 81.0 418 477
IHX 101251 0.1 20.1 355.0 3801 11306
DVS WEST 101251 0.1 201 70.0 2044 2814
FIP 100985 411 42.3 425.0 1082 1085
FHLA1 100898 445 49.6 451.0 1766 4584
SIP 100775 55.6 59.7 451.0 1600 3702
RRB 101230 0.1 21.9 1600.0 10240 59840
ENVIRON1 100726 0.1 63.8 1.0E4 n/a 1.0E6
ENVIRON2 101085 0.1 34 1.0E4 n/a 1.0E6
ENVIRON3 101317 0.1 14.7 1.0E4 n/a 1.0E6

* Compartment nomenclature as per Figure 2-1

Table 2-3: Junction Data

Junction From * To* Type Area Length | Elevation
(m?) (m) (m)

1 RTC IHX RUPTURE 12.25 2.0 36.15

2a RLC IHX RUPTURE 1.50 20 13.75

2b RLC IHX RUPTURE 1.50 20 12.03

3 RLC COP2 ATMOS_JU 20.8 2.0 5.88

4a COP2 IHX RUPTURE 4.00 1.0 5.88

4b COP2 IHX RUPTURE 4.00 1.0 5.88
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Junction From * To* Type Area Length | Elevation
(m’) (m) (m)

5a IHX DVSW RUPTURE 24.50 1.0 5.01

6a DVSW FIP ATMOS_JU 35.28 1.0 41.07

7 FIP FHLA1 ATMOS_JU 12.25 1.0 43.47

8 FHLA SIP ATMOS_JU 13.89 1.0 54.63

9 SIP ENVIRON1 RUPTURE 16.00 1.8 63.84

10a IHX ENVIRON2 ATMOS_JuU 4.771E-4 1.8 34.00

10b IHX ENVIRON3 ATMOS_JU 4.771E-4 1.8 14.70

11a IHX RRB ATMOS_JU 4.771E-4 1.8 34.00

11b IHX RRB ATMOS_JU 4.771E-4 1.8 14.70

12a RRB ENVIRON2 ATMOS_JU 3.675E-3 1.8 34.00

12b RRB ENVIRON3 ATMOS_JU 3.675E-3 1.8 14.70

* Compartment nomenclature as per Figure 2-1

Leakages to the environment are modeled from the IHX and RRB compartments. Three
Environment compartments have been defined to separately account for releases through the
stack, releases through leakages in the upper portion of the IHX at 20.0m and releases through
leakages in the lower portion of the IHX at 0.7m.

The material properties for concrete walls (heat capacity, heat conductivity, emissivity and
density) were specified according to the normal concrete material specification used in the
PBMR design.

Fission products were defined as either being attached to dust or not attached to dust, i.e. being
transported with the gas. The mass injection rate as a function of time was used for the fission
product injection. For the case of modeling fission products as aerosols a new aerosol, with
diameter 1E-07 m, was defined and the mass flow rate as a function of time for this aerosol was
equal to the sum of the mass flow rates for all the fission products.

2254 Assumptions

The flowing assumptions were made in the model
e Junctions 6a and 6b were combined into one junction with the combined cross-section
area due to an artificial convection loop appearing.
Radioactive decay not modeled.
A friction coefficient of 1.0 is used in the code.
No fission product chemistry modeled at this stage.
Assumption of instantaneous mixing in Lumped-Parameter codes and a homogeneous
state in a compartment.
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2255 Limits of Applicability

The model has the following limits of applicability
e The gases in the CPA module are treated as real gases with a set of correlations for their
properties valid up to temperatures of 3000°C.
e Codes like ASTEC are based on the lumped parameter modeling concept which may
have limitations in representing certain complex spatial interactions.

2.2.6 EXCEL2

The offsite Total Effective Dose Equivalent (TEDE) and thyroid Committed Effective Dose
Equivalent (CEDE) to the public at the 400m exclusion area boundary (EAB) are calculated in a
Microsoft Excel spreadsheet, referred to as EXCEL2. The TEDE calculation is based on the
definition of TEDE in the NRC Regulatory Guide 1.183 (2000). TEDE is defined as the sum of
the CEDE from inhalation and the effective dose equivalent (EDE) from external air submersion.
The thyroid CEDE is the CEDE to the thyroid organ due to inhalation.

Radionuclide releases from the RB to the environment during the DLOFC transients are input to
EXCEL2 and are provided from the ASTEC calculations for seven RNs: Ag-110m, Ag-111, Cs-
137,1-131, 1-133, Sr-90 and Te-132. These seven RNs are considered the dominant contributors
to the offsite TEDE and thyroid CEDE based on insights from previous HTGR studies.
EXCEL2 explicitly calculates the doses based on the seven RNs and then estimates the TEDE
and thyroid CEDE if all other RNs in addition to the seven were included. Based on the

GT MHR Preliminary Safety Assessment Report [5], Table 4.4.3-3, the seven RNs are assumed
to account for 80% of the TEDE and 90% of the thyroid CEDE.

The assumptions to calculate the offsite doses are selected to meet the objective of a realistic

assessment for a generic site to provide input to the next phase of the NGNP design. This is not

to be confused with a conservative evaluation for licensing purposes which can not be supported
at this early stage of design. Uncertainties associated with some of these assumptions are
assessed in Section 3 as part of the barrier retention allocation study. The EXCEL2 model is
based on the following considerations:

e Dose calculation methodology is based on NRC Regulatory Guide 1.183 and methods used
in previous HTGR safety evaluations such as those for the MHTGR.

e The cumulative dose is calculated for a 300hr (12.5 days) exposure time for an adult at the
offsite boundary, after which relocation is assumed. The breathing rates and weather
dispersion factors are constant for this period.

e Dose conversion factors are taken from Federal Guidance Report 13 CD (2002). All of the
dose conversion factors are for an adult.

e The daily average breathing rate of 2.32E-4 m’/s is based on NRC Regulatory Guide 1.4.

e The weather conditions in NRC Regulatory Guide 1.3 for the 1-4 day period are selected as
generic weather conditions that yield conservative, 95th percentile weather X/Q values.
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o The generic weather conditions for best estimate calculations are assumed to be such
that the best estimate X/Q values are 10% of the conservative values.'

o This approach is consistent with MHTGR PSID [6] and PRA methods and Section
7.1 of NRC Regulatory Guide 4.2.

o The ground release weather X/Q is 2.60E-5s/ m’.

o The stack release weather X/Q is 1.90E-6s/ m® for an assumed 50m stack.

e No radioactive decay or deposition of the plume is assumed in transit from the RB to the
dose receptor.

Offsite doses for the DLOFC events are compared to the Top Level Regulatory Criteria of the
Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA) for
assessing and regulating nuclear power plants in the US. These requirements are shown in Table
2.2 and are the same as used in the 2008 RB Study [1].

Table 2-4 Radiological Dose Limits and Bases

Regulation Application Offsite Dose Limits

NRC 10CFR50.34 and Offsite dose limits during

NRC 10CFR50.67 design basis events (DBEs) TEDE < 25rem/event

EPA Manual of Offsite dose limits during
Protective Action Guides | DBEs and beyond design
<
and Protective Actions basis events (BDBEs) at Th i?dDgEDgin;/::;I;Zven ¢
for Nuclear Incidents which sheltering is y
(1992) considered

2.3 THERMOFLUID BEHAVIOR DURING DEPRESSURIZATION

2.3.1 Impact of Break Size on Depressurization Time

The NGNP NHSS Flownex Model as described in Section 1.1, with a few modifications
for the pipe break analyses purpose, was used to obtain the depressurization time and shear force
ratio results for the whole range of identified break sizes.

' We use the generic site and best estimate for design and will continue to do so throughout the design process,
however for licensing when we have a site and the necessary site specific weather data, we will update these generic
conditions with site specific weather conditions and the associated or necessary conservatisms.
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To determine the depressurization time of the NHSS through the various defined pipe
break sizes, the NGNP NHSS Flownex Model was coupled via a pipe break element directly to
the environment at normal atmospheric conditions (i.e. assuming a pressure of 100kPa and a
temperature of 25°C). The PRS model (Section 2.2.1.1) was excluded for this exercise, because
the flow through the “break” is for more than 95% of the time choked (i.e. having a Mach
Number of 1) in which case the downstream pressure has virtually no effect on the flow. In the
case with the RB model attached, the gas pressure in the break compartment reaches a maximum
in the order of 105 to 110kPa early in the transient, versus approximately 9000kPa inside the
NHSS HPB. By the time the flow through the break reaches the un-choked condition (which is at
a HPB pressure lower than ~300kPa), the gas pressure in the break compartment has equalized to
atmospheric pressure. The depressurization time was determined from the break gas pressure
data as the first time step data point in the series of decreasing pressure values where the pressure
reaches a pressure difference (dP) lower than 0.05kPa. Since atmospheric conditions are defined
as 100kPa and 25°C, this relates to the time step when the pressure upstream of the break first
reaches 100.05kPa. All Flownex transients for the various break sizes were run for a time
duration up to the point where the break pressure is equal to (or just less than) the atmospheric
pressure (< 100kPa).

The depressurization (blowdown) time results for the selected pipe break sizes is given in
Table 2-5 and can be presented as a quadratic decay curve of blowdown time versus break size
(see Figure 2-8 for the break sizes from 3 mm to 30 mm. The larger sizes are not included for
visual reasons). The trendline fitted to the data according to t = m/D” + to, where t is the
blowdown time (s), D the break diameter (m) (i.e. break size), and m and t, are the gradient and
intercept of fitted trendline respectively, is t = 5.12e6/D* + 4430.

Table 2-5 Summary of Depressurisation (Blowdown) Times for the different Break
Sizes of the core inlet pipe from the NHSS PHTS

Break Size | Max mass
. Blowdown | Blowdown
(mm) flow during time (s) | time (hrs)
break (kg/s)
3 0.043 568020 158
4 0.077 328620 91
5 0.119 213420 59
Small Breaks
6 0.171 147420 41
10 0.472 52860 15
30 4.24 6373 1.8
100 47 1 674 0.187
Large Breaks 230 247 121 33.6E-3
1000 4354 12.3 33.3E-4
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Figure 2-8 Graph of Blowdown Times for small breaks (3 mm to 30 mm EBS)

It was observed that small changes in NHSS He inventory and operation have a large
influence on blowdown times. The blow down times indicated may therefore change
substantially with changes in the NHSS design. This in turn will lead to changes in the size of the
limiting case small break.

2.3.2 Impact of Break Size on Shear Force Ratios

The same transient runs that are used for the determination of blowdown times were also
used to extract the required gas pressures, temperatures and velocities from various locations in
the NHSS for each break size. The shear force ratio (SFR) is then calculated from

P 0.75 V 1.75 T 0.58
SFR =| £ *| B ®| 2N (1)
PN VN TB
where

P is the static pressure [kPa],
V is the velocity [m/s],
T is the static temperature [K].

The subscript “B” signifies blowdown conditions (i.e. after a break occurred) and the
subscript “N” signifies normal operation conditions (i.e. during steady state). The break is
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simulated to occur at time t = 1s, in which case the recorded values for the time between 0Os and
1s represents the steady state in the transient results. The shear force ratios are calculated for a
few selected locations around the PHTS, namely the Reactor Inlet, Reactor Outlet, Reactor
Lower Volume, the CCS Inlet Connection, the IHX Inlet and the Circulator Outlet.

A summary of the shear force ratios for the defined locations is given in Table 2-6. The
shear ratios are less than one for all the smaller breaks and close to one for the 100 mm EBS.
Only above 100mm EBS are shear force ratios greater than 1 observed. This indicates that liftoff
during the two cases analyzed in the calculation chain can be considered minor. Shear forces
increase significantly near the break (i.e. at the Reactor Inlet) for the 230 mm and 1000 mm EBS,
as expected.

Table 2-6 Summary of Shear Ratios for a core inlet pipe break of various sizes

Break Size (mm, EBS)
Location 3mm | 4mm | 5mm | 6mm | 10mm | 30 mm | 100 mm | 230 mm | 1000 mm
Reactor Inlet 0.0306 | 0.0306 | 0.0307 | 0.0308 | 0.0314 | 0.0390 | 0.8269 2.3467 127.45
Reactor Outlet 0.0195 | 0.0194 | 0.0195 | 0.0194 | 0.0194 | 0.0188 | 0.9879 1.0002 1.5147
Reactor Lower Volume 0.0685 | 0.0685 | 0.0687 | 0.0688 | 0.0695 | 0.0787 | 0.9953 2.4003 84.30
CCS Inlet Connection 0.0195 | 0.0194 | 0.0195 | 0.0194 | 0.0194 | 0.0188 | 0.9537 1.0003 1.8534
IHX Inlet 0.0083 | 0.0083 | 0.0083 | 0.0083 | 0.0083 | 0.0080 | 0.2333 0.9999 1.0000
Circulator Outlet 0.0062 | 0.0062 | 0.0062 | 0.0062 | 0.0062 | 0.0063 | 0.0251 1.0000 1.1203

233 Air Ingress to Reactor Building and PHTS Circuit

To obtain air ingress results for the 100mm EBS HPB break, the NHSS Flownex model
was coupled to the NGNP PRS Flownex model. In the calculations the RB remains open to
atmosphere all the time. No closing of dampers is modeled. Note that this analysis was not
performed for the 4mm break, as the long blowdown timer results in an expected lower air
ingress value.

Air ingress into the PHTS of the NHSS following a pipe break is dependant on the
amount of air in the break compartment as well as the rate of cooling that occurs from the NHSS
pipes. The calculation records the relevant data for a 300 hr period. The pipe break element is
coupled to the RB compartment in which the break occurs, while all the heat transfer elements
from the pipes around the PHTS and SHTS are connected to the compartments in the RB model
in which the NHSS resides.

A 100 mm EBS of the Core Inlet Pipe (CIP) was simulated to occur in the Reactor Top
Cavity (RTC) compartment. The helium filled the RTC very quickly, indicated by the helium
mass fraction that rose to 1 (see Figure 2-9). The helium fraction started decreasing in the RTC
after about 700s, which is the time that blowdown from the break ceased. It decreased to
approximately 0.94 after an hour and reached 0.90 at the end of the transient (i.e. after 300 h, not
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shown on the graph). This implies air content in the break compartment between 6% and 10%
during the air ingress period. The helium content in the Filter Inlet Plenum (FIP) increased to
0.44. It follows a similar pattern with a faster decrease down to 0.35 after an hour, as it is
situated closer to the RB outlet point.

The results of the air mass fraction response, as recorded at various locations in the
reactor and PHTS following a 100mm EBS of the CIP, are shown in Figure 2-10. Apart from
small deviations at the reactor outlet and CCS inlet connection points, all the mass fractions
inside the reactor (i.e. the reactor inlet, reactor lower volume, void above core and the location
below the outlet slots) show a very similar slow increase (graphs on top of each other). An air
mass fraction of 0.022 (less than 2.2% air) is reached after 300 hrs, indicating virtually zero air
ingress back into the reactor. This result is due to the fact that by the time flow back into the
PHTS is established; the RTC compartment contains almost only helium (Figure 2-9). No air is
available to be drawn back into the system.

Compartment He Mass Fraction
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Reactor Inlet —— Reactor Top Cavity — FIP Compartment

Figure 2-9 Helium mass fraction response in the RTC and FIP compartments of
the RB, after a 100 mm EBS of the CIP occurred in the RTC
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Figure 2-10 Air mass fraction response at various PHTS and reactor locations,
after a 100 mm EBS of the CIP occurred in the RTC

The unexpected low air ingress rate observed is mainly due to the small volume of the
RTC compartment. The helium released from the PHTS can fill the volume completely. As a
sensitivity study a 100 mm EBS of the Core Inlet Pipe (CIP) was also simulated to occur in the
Intermediate Heat Exchanger (IHX) compartment. The volume of the IHX cavity is 11306 m> as
opposed to the volume of the RTC of 1184 m”, thus one expects a larger fraction of air to be
present and available for air ingress after blowdown.

The helium mass fractions in the new break compartment (IHX) and FIP are compared
against the original break simulation in the RTC in Figure 2-11. The maximum helium content in
the IHX compartment is only 0.61, meaning there is ~39% air available after blowdown to be
drawn back into the PHTS. At the end of the transient the helium mass fraction in the [HX
compartment decreased to 0.57.

A similar pattern as previously is also observed in the FIP compartment, situated some

distance further in the RB. The maximum helium mass fraction of 0.47 is somewhat higher than
previously, reaching a value of 0.35 after 300 hrs.
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Figure 2-11 Helium mass fraction response in the IHX and FIP compartments of
the RB, after a 100 mm EBS of the CIP occurred in the IHX

In Figure 2-12 the air ingress results for the break that occurs in the IHX compartment are
compared against the results obtained for the same break that occurred in the RTC compartment
of the RB. As expected, a much higher air ingress rate is observed, reaching an air mass fraction
of 0.17.
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NHSS and Reactor Air Mass Fraction Comparison
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Figure 2-12 Comparison of air mass fraction at various PHTS and reactor
locations, after a 100 mm EBS of the CIP occurred in the RTC or in the IHX
compartments

For the air ingress calculations, especially after the blow down phase, the mass flows
observed were very low. These low mass flows lead to instabilities in the Flownex solution
method, especially when lower than the convergence criteria. In order to smooth out the
numerical instability observed, a 2™ order polynomial fit was applied to the post-blowdown data
and used as input for the Excell and TINTE models.

234 Impact of Break Size on Core Thermal Response

2.3.41 DLOFC Transient Assumptions

All the DLOFC transients were started from the same steady state condition, i.e. S00MW power,
280 °C inlet gas temperature, 750 °C outlet gas temperature, inlet pressure 90 bar, and inlet mass
flow rate 204.5 kg/s. The following assumptions were made for all cases regarding the transient
modeling of Systems, Structures and Components (SSCs):

e A full reactor SCRAM is initiated at t = 300 s, over a period of 16 seconds.

e The RCCS water temperature (which acts as a radial temperature boundary condition in the
TINTE model) was ramped from 25 °C to 135 °C att=1 s, over a period of 14 hours.
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e The inventory pressure blow down period was modeled according to FLOWNEX input data.
A typical fit of approximately 15-20 points was used to model the decrease in gas pressure
down to 100kPa over the specified durations. The depressurization times are shown in Table
2-7. The differences between the TINTE and FLOWNEX blow down times are small, and on
the conservative side for TINTE, since a faster blow down transition would lead to higher
fuel temperatures. (If the detailed input data is compared, a second slight mismatch will be
found between the FLOWNEX recommended blow down period, and the TINTE
implemented periods. This is due to different atmospheric equalization criteria used:
FLOWNEX tracked the time when the pressure differential across the break reached
0.05 kPa, while TINTE utilized 1.0045 bar, since its inputs format requires the bar pressure
unit and two decimal digits accuracy).

e After the equalization pressure of 100kPa was reached, all gas-related calculations were
terminated in TINTE, i.e. the transient then becomes a pure conduction and radiation driven
problem.

e The FLOWNEX data exhibited complex positive (incoming) and negative (outgoing) flows
at the reactor inlet and break location. Since the magnitude of these flows very quickly
becomes very small, it was decided to model the decrease in the TINTE inlet mass flow rate
as an exponential drop from 204.5kg/s to 0.0kg/s over the first 60 seconds of each break. The
forced mass flow rates then remained at 0.0kg/s for the duration of the pressure drop period.
This is a conservative assumption, since this fast decrease in the forced gas flow would lead
to higher fuel temperatures (as opposed to modeling the forced flow decrease over 1 hour, for
example). Note that TINTE still continues to calculate different rates of natural convection
in the core during this period, depending on the gas inventory and the fuel temperatures
during the blowdown phase.

e The FLOWNEX variations in the reactor inlet gas temperature were not modeled in TINTE,
since the inlet gas mass flow rate falls to 0.0kg/s within the first 60 seconds of each case.
This is a conservative assumption, since the fixed inlet gas temperature of 280°C would lead
to higher fuel temperatures.

Table 2-7: Event depressurisation times

B":;kms)ize TINTE blow down time (s) | FLOWNEX blow down time (s)
3 561420 568020
4 325920 328620
5 208920 213420
10 51660 52860
100 523 689
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2.3.4.2 Fuel Temperature Results: 3 mm - 100 mm Breaks

The maximum and core average fuel temperature behavior of the 4 small breaks (3-10 mm) and
the 100 mm medium break are shown in Figure 2-13 and Figure 2-14, respectively. These two
parameters are defined as follows:

e Maximum fuel temperature (MFT): The current TINTE model calculates the fuel
sphere surface and centre temperatures for 260 spatial positions in the core (10 radial and
26 axial coarse meshes). These two fields are calculated for 6 “types” of fuel (also called
“batches”), which consists of the 6 fuel passes through the core. Pass 1 represents the
fresh fuel, and pass 6 the most-burnt fuel before final discharge. Of these 6 fuel batches,
the fresh fuel usually produces the highest fuel centre temperatures. The “maximum fuel
temperature” parameter is then defined as the spatial maximum of the highest fuel centre
temperature.

Note that since the relationship between heat transfer mechanisms in the core (convection,
conduction and radiation) varies significantly with time for a typical slow DLOFC event,
this spatial maximum temperature changes location in the core. The lines in the plots
below therefore do not represent the same spatial location in the core over time, nor is it
possible to directly compare the maximum fuel temperatures (on the plots) between the
various cases, since the maxima might not necessary occur at the same location for all
cases.

e Core average fuel temperature: The volume-weighed average temperature of all the
fuel in the core region. Note that his average is calculated over the fuel region in the
spheres only (i.e. it is not the total sphere volume average), and it is averaged over all the
fuel batch temperatures.
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Figure 2-13: Maximum fuel temperatures for 100 mm, 10 mm, 5§ mm, 4 mm and 3
mm breaks.
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Figure 2-14: Core average fuel temperatures for 100 mm, 10 mm, 5§ mm, 4 mm and
3 mm breaks.
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The highest/peak values of the data in Figures 1 and 2 are indicated in Table 2-8.

Table 2-8: Peak maximum and core average fuel temperatures (°C)
for 3-100 mm breaks

Peak maximum fuel Peak core average fuel
Case temperature (°C) and | temperature (°C) and time

time of peak (h) of peak (h)

3 mm break 1600 @ 67 h 1067 @ 78 h
4 mm break 1634 @ 59 h 1096 @ 72 h
5 mm break 1653 @ 59 h 1110 @ 68 h
10 mm break 1673 @ 53 h 1128 @ 61 h
100 mm break 1668 @ 53 h 1131 @61h

The following observations can made from the data presented above:

The peak values occur sooner for the larger break cases, and appear delayed for the
smaller breaks, i.e. the initial gradient of the rise in MFT is steeper for large breaks than
smaller breaks. This is due to the increased heat transfer at higher gas inventories to the
ex-core structures (mainly to the top and side reflectors).

The core average fuel temperature peak significantly later than the peak MFT time point,
implying that on average the core is still getting hotter after the /ocalized maxima have
been reached. The spatial map in Figure 2-15 show just how small and localized these
high temperature volumes are (refer to the small fuel volume in the interval >1600°C,
which dominates the fission product release from the fuel).

The results in Table 2-8 show an unexpected variation in the peak MFT. Generally
speaking, higher gas inventories during a slow DLOFC should lead to lower maximum
fuel temperatures, since the added convective heat transfer in the core distribute the
localized heat more effectively to the cooler areas of the core. This general trend can be
seen from the 3, 4 and 5 mm cases, where the 3 mm cases exhibited the lowest peak
MEFT. However, this is not observed for the 100 mm case, which should have lead to the
highest peak MFT. In stead, the 100 mm break case is ~5°C cooler than the 10mm case at
their respective peak value time points. Figure 2-16 show however that the 100mm case
is hotter than the 10mm case for the first 24 hours. It is also important to note that the
core average temperature does follow the expected trend, i.e. with the 3mm case being
the coldest and the 100mm case the hottest. Also, the 5°C difference between the 10mm
and 100mm cases can be seen as insignificant on a base temperature of 1670°C.
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Figure 2-15: Spatial distribution of maximum fuel temperatures for 100 mm break
att=53 h.
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Figure 2-16: Maximum fuel temperatures for 100 mm and 10 mm breaks: 15-35 h.
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Figure 2-17 to Figure 2-20 show the behavior of the MFT during 4 different stages of the
transients: during the first hour, up to 15 h, between 40-80 h when the peak values are reached,
and in the final stage between 280 and 300 h. Figure 2-17 and Figure 2-18 clearly show the
cooling effect of the larger gas inventories during the earlier stages of the breaks: at t =10 h, the
MFT varies 154 °C between the 100 mm (1453 °C) and 3 mm (1299 °C) cases. The two larger
breaks (10 and 100 mm) also lead to very similar MFT behavior in this period, while the three
smaller breaks are more evenly grouped together.

The spread between the 5 cases has decreased to less than 100°C by the time the peak MFT
values are reached (Figure 2-19), but at the end of the simulated 300 h period only the 3 mm case
is noticeably cooler (~6°C) than the other 4 cases (Figure 2-20). The natural convection-driven
differences that exist between these cases are therefore dominant for the first 100-120 hours of
the transients — after this period all 5 cases continue as basic decay heat removal events, which
are determined by the heat removal capacity of the RCCS system.
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Figure 2-17: Maximum fuel temperatures for 100 mm, 10 mm, 5§ mm, 4 mm and 3
mm breaks: 0-3600 s.
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Figure 2-18: Maximum fuel temperatures for 100 mm, 10 mm, 5§ mm, 4 mm and 3
mm breaks: 1-15 h.
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Figure 2-19: Maximum fuel temperatures for 100 mm, 10 mm, 5§ mm, 4 mm and 3
mm breaks: 40-80 h.
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Figure 2-20: Maximum fuel temperatures for 100mm, 10mm, 5mm, 4mm and 3mm
breaks: 280h-300h

2343 Fuel Temperature Volume Histogram Data

In addition to tracking the behavior of the core maximum and average fuel temperature with time
for the 5 small and medium breaks, the maximum fuel temperature volume histogram data can
also be analyzed as an additional source of information on spatial heat movement in the core.
Figure 2-21 and Figure 2-22 show the % of fuel (as a function of the total core volume) in 100
°C MFT intervals between 1200 °C and 1700 °C, for the first 120 hours of the 100 mm and 3
mm breaks.

Small volumes of fuel (less than 6% of the total core volume) experience MFTs above 1600 °C
between 25 h-90 h (Figure 2-21). In contrast to this behavior, the MFT for the 3 mm case never
reaches 1600 °C (Figure 2-22), and the exposure period of the fuel between 1500-1600 °C is also
less (~90 h) when compared with the 100 mm exposure period for this interval (~ 110 h). Based
on this information alone the conclusion can be made that the delayed source term of the 3mm
case will be significantly less than the 100 mm case, if the time-at-temperature criterion is used
for the migration of FP out of the fuel spheres.
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Figure 2-21: Maximum fuel temperatures: % of core fuel volume in 100 °C
temperature intervals for the 100 mm break. Transient variation over the first 120
h.
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Figure 2-22: Maximum fuel temperatures: % of core fuel volume in 100 °C
temperature intervals for the 3 mm break. Transient variation over the first 154 h.
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The comparative volumetric MFT behavior at t=5 h and t=50 h for the 3,5,10 and 100 mm cases
are shown in Figure 2-23 and Figure 2-24. At t=5 h, the 100 mm case experiences larger fuel
volumes in the 1300-1500 °C intervals (total 17%), while the 10 mm case is significantly cooler
(total 14%). However, at t=50 h the 10 mm case has 5.1% of the core volume at a MFT > 1600
°C, while the 100 mm case now only has 4.5% in the same interval. A similar trend is shown in
Table 2-9, where the 10 mm case has the largest volumes of fuel for longer durations above
MEFTs of 1600 °C. On face value of this data, the 10 mm case could therefore lead to the
highest delayed FP source term, if fuel temperatures above 1600 °C are the dominant
driving mechanism.

This conclusion cannot however be made from the TINTE data in isolation: for the 100 mm case
18.4% of the core volume has MFTs in the interval 1400-1600 °C, compared to 17.5% of the
core volume for the 10 mm case (i.e. the reverse situation to the >1600 °C interval). If it is kept
in mind that these are only 2 snapshots out of 300 hour transients, it is clear that only the
GETTER data will finally determine which of the 100 mm or 10 mm cases leads to the highest
delayed FP source term.
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Figure 2-23: Maximum fuel temperatures: % of core fuel volume in 100 °C
temperature intervals for the 100 mm, 10 mm, 5 mm, and 3 mm breaks. Snapshot
at 5 h.
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Figure 2-24: Maximum fuel temperatures: % of core fuel volume in 100 °C
temperature intervals for the 100 mm, 10 mm, 5 mm, and 3 mm breaks. Snapshot
at 50 h.

Table 2-9: 3-100 mm cases: % of Core Volume with MFTs above 1600 °C, and
duration exposed to this temperature.

Core volume period above 1600C (h)
above 1600C
(%) 100 mm 10 mm 5mm 4 mm 3 mm
1% 62 67 57 43 0
3% 45 48 26 0 0
5% 0 6 0 0 0

As indicated earlier, the 10 mm case has the largest volumes of fuel for longer durations above
MFTs of 1600°C. The increased convective heat mixing in the core during the 10 mm case
distributes the high temperature region over a large core volume than the 100 mm case. The two
cases are very close in peak MFT, but the interplay between radiation, conduction and
convection seem to combine in the 10 mm case to expose larger fuel volumes for longer to MFTs
> 1600°C. This (somewhat surprising) result should be re-assessed with detailed CFD analysis at
some point, since TINTE’s convective heat flow in a porous medium approach are limited.
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2344 100mm Break With Air ingress: 1% and 20% Air Molar Fractions

As a sensitivity study, the 100 mm break case was analyzed with air ingress at the break opening.
The data for this scenario was also supplied by FLOWNEX, but due to the very low air ingress
mass flow rates and oxygen content, a few bounding assumptions were made for the TINTE
analysis:

e A mixture of helium and dry air was specified to enter the break location (at the top inlet
plenum, close to the RPV). In stead of the varying air mass fraction calculated by
FLOWNEX (between 0% and 2.2% over 300 hours), a constant molar fraction of 1% was
assumed to be present over the entire transient. (An example of the conversion of
FLOWNEX mass to TINTE molar fractions is shown below in Table 2-10, where it can
be seen that the air molar fractions are always less than 1%). At a later stage, a second
break location in the IHX volume along the inlet plenum was modelled by FLOWNEX,
which resulted in a larger varying air mass fraction of up to 17%. For this case, a very
conservative constant air molar fraction of 20% was assumed to be present.

e The FLOWNEX data also predicted that the ingress of air would only start after ~ 40
hours. This initial helium-only phase was also neglected, and a conservative assumption
was used in the TINTE calculation to allow air ingress to start at 60 s.

e The FLOWNEX combined air and helium mass flow ingress rate varied between 0.1 and
4 gram/s (the air component was always lower than 0.02 g/s — see Table 2-10). For the
TINTE calculation, a constant mixture flow of 4 g/s was assumed from 60 s onwards.
(Note that of the 4 g/s mixture ingress mass flow rate, only 0.02 g/s is air, of which 22%
is O»).

e The air ingress calculation is extremely time consuming (factor 5 slower than real time).
This implies a real-time requirement of ~60 days to model a 300 hour air ingress case.
Since the air ingress molar fraction, and the air mass flow rate, is very small for these
cases, it was therefore decided to only simulate this 100 mm break up to 40 hours for the
1% case, and up to 48 h for the 20% molar fraction case.
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Table 2-10: Example of FLOWNEX mass flow rates converted to TINTE molar
fraction rates at a few time points

Time Helium Dry Air
(s) kgls mol/s molar fraction kgls mol/s molar fraction

59100 -3.44E-03 -8.59E-04 1.0000 -6.47E-09 -1.079E-10 1.26E-07
101100 -3.14E-03 -7.85E-04 1.0000 -3.65E-07 -6.076E-09 7.74E-06
200100 -2.41E-03 -6.01E-04 0.9999 -3.77E-06 -6.286E-08 1.05E-04
302100 -1.80E-03 -4 49E-04 0.9997 -6.81E-06 -1.135E-07 2.53E-04
401100 -1.51E-03 -3.78E-04 0.9995 -1.03E-05 -1.723E-07 4.56E-04
500100 -9.84E-04 -2.46E-04 0.9993 -9.73E-06 -1.622E-07 6.59E-04
602100 -5.97E-04 -1.49E-04 0.9992 -7.32E-06 -1.220E-07 8.16E-04

Due to the very low air ingress rates, and the dominant presence of helium mixing at the break
location (as opposed to a pure air ingress scenario), the amount of the corrosion that took place in
the core was very low. It is shown in Table 2-11 that for the case where 1% air molar fraction is
used, only 0.16 kg of the core fuel graphite was converted to CO and CO,, while the
conservative 20% case resulted in 11 kg core fuel corrosion.

Table 2-11: Total mass of graphite corroded after 40 h of air ingress for two air
molar fractions

Air molar Total mass of graphite corroded (kg)
fraction Core graphite Reflector graphite

1% 0.18 (@ 40 h) 0.25 (@ 40 h)

20% 11.06 (@ 48 h) 1.63 (@ 48 h)

The spatial graphite corrosion concentration (mol/m’) pattern at t = 40 h for the 1% molar
fraction air ingress case is shown in Figure 2-25. The major corrosion activity is concentrated in
the bottom parts of the core and the riser channel, and the upper part of the control rod channel.
Since gas flow paths are also modeled in the central hole, a small amount of corrosion is also
visible in the lower section of the central hole. No corrosion greater than 0.5mol/m’ has yet
occurred at 40 hours in the bottom reflector for this case.
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Figure 2-25: 100 mm break with 1% molar fraction air ingress: Graphite corrosion
concentration (mol/m?®) distribution att=40 h

In contrast to the 1% case, the 20% molar air fraction case distribution (shown in Figure 2-26 to
Figure 2-28) indicates that much more corrosion occurs in the core region, and almost none in
the bottom reflector structures. Initially, at t = 12 h, corrosion occurs at the bottom and top of the
core, mostly driven by the temperature differences and the availability of oxygen. Twelve hours
later (Figure 2-27), the corrosion in the bottom of the core dominates, while some central
reflector corrosion is also visible in the central hole (air that rises in the cooler side reflector does
not yet react, but when it flows downwards in the much hotter central reflector, corrosion
occurs). This basic corrosion pattern remains visible at 48 h as well, where no corrosion above
25mol/m’ has occurred up to 40 hours in the bottom reflector for this case.

It is therefore important to note from these two examples that the degree, as well the spatial

location of the observed corrosion, is very sensitive to the amount of air available for chemical
reactions.
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Figure 2-26: 100 mm break with 20% molar fraction air ingress: Graphite
corrosion concentration (mol/m®) distribution att =12 h
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Figure 2-27: 100 mm break with 20% molar fraction air ingress: Graphite
corrosion concentration (mol/m®) distribution att =24 h
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Figure 2-28: 100 mm break with 20% molar fraction air ingress: Graphite
corrosion concentration (mol/m?®) distribution at t = 48 h

The non-linear increase in core and reflector corrosion over the first 40 hours of the 100 mm
break with 1% air molar fraction can be seen in Figure 2-29. After the discreet changes in
gradients around 18 h, the core and reflector corrosion rates continue at a constant gradient up to
40 h. The sharp increase in the reflector mass corroded at t~18 h is mainly caused by the rise in
reflector temperatures as the core heat is conducted through the side reflector.

This behavior is not observed for the 20% air molar fraction case, which exhibits a much more
linear trend in the rate of corrosion. As shown in the spatial distribution above, the core corrosion
rate for the 20% case dominates the reflector corrosion rate completely (Figure 2-30), in sharp
contrast to the 1% case.

In conclusion; it is difficult to predict the corrosion behavior of the core over the next 260 hours
based on data from the first 40-48 hours. However, since the actual mass of core graphite
corroded in these 2 cases (<0.3 kg and <11 kg) remains very small compared to the total core
graphite mass (~91000 kg), it can be concluded that no significant additional fission products
are released due to corrosion of the fuel elements.

It is also important to recognize that the analysis is for the 100 mm case where the margin factors
to the dose limits are 3 to 4 orders of magnitude larger than for the limiting 4 mm case (details on
this are provided in Section 3). Air ingress and oxidation effects for the 4 mm case are not
expected to be significant as the essentially zero pressure differential will prevent any air
exchange of significance taking place. Therefore for the design basis spectrum of accidents air
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ingress and oxidation could reduce the margin factors for the larger leaks, but it would not be
expected to change the fact that the small leak cases (4 mm) are the limiting cases.
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Figure 2-29: 100 mm break with 1% molar fraction air ingress: Graphite corrosion
up to 40 h (gram)
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Figure 2-30: 100 mm break with 20% molar fraction air ingress: Graphite
corrosion up to 40 h (gram)

2.3.5 Thermofluid Behavior Conclusions and Recommendations

The thermofluid behavior of the PHTS during depressurization is characterized by blowdown
times that vary from 158hr to 11min for the range of break sizes (3mm to 100mm break
diameter) analyzed. However, small changes in NHSS helium inventory and operation have a
large influence on these blowdown times. Changes in the NHSS design are therefore likely to
change the blowdown times and as a result the size of the limiting small break.

The results confirm that for DBAs shear force ratios remain below 1 and hence insignificant dust
re-suspension and lift-off can be expected.

In terms of the PHTS and RB gas exchange phenomena, the break location as well as the RB
compartment layout has a strong effect on the air ingress fractions. Further CFD studies are
recommended as well as possible experiments to evaluate PHTS-RB gas exchange phenomena
not modeled in Flownex and to evaluate impact of oxidation reactions on flow associated
phenomena.

The core thermal response has indicated that the slightly higher 10 mm break MFT results
compared with 100mm appear counter intuitive. However, detailed analysis traced the root cause
back to increased convective heat mixing in the core during the 10 mm case, which distributes
the high temperature region over a larger core volume than the 100 mm case Apart from this
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insignificant anomaly, the 3 mm to 100 mm cases all confirmed the general trend of cooler fuel
temperatures with an increase in gas inventory and blow down time. Since spatial temperature
distributions can have an effect on the MFT and can make results appear counter intuitive, it
would be useful to extend the analysis chain to a larger set of break sizes.

From the corrosion sensitivity study it was found that over a period of 40-48 hours, the total
corrosion in the core ranged from ~1 kg to ~10 kg for 1% to 20% air molar fractions,
respectively. This represents an insignificant fraction of the core mass (~90 000 kg). CFD
analysis could be used to obtain a clearer understanding of the air ingress and the corrosion

associated with such an event, though the indications are that in terms of the dose limits the air
ingress will not contribute significantly.

2.4 RADIONUCLIDE RELEASES

241 Radionuclide Releases from the Fuel to the PHTS

| The normal operation (pre-break) total core release rates are listed in Table 2-12Fable2-12.

Table 2-12: Normal operation core release rates

Nuclide |Release from core (atoms/s)
Ag-110m 5.36E+10
Ag-111 1.48E+09
Cs-134 4.89E+10
Cs-137 6.91E+11
Sr-90 2.17E+06
Kr-88 3.88E+10
Kr-90 5.92E+09
1-131 7.60E+10
1-133 9.44E+10
Te-132 8.62E+10

Release curves for the evaluated breaks and considered radionuclides are presented in Figure

2-31Figure2-31 to Figure 2-37Figure 2-37.
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Figure 2-31: Ag-110m releases

In general, releases for the different breaks increases from 3mm, being the lowest releasing, to
4mm, Smm and 100mm to 10mm which is the highest releasing. This corresponds to the
maximum fuel temperatures calculated by TINTE.
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Figure 2-32: Ag-111 releases
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Figure 2-33: Cs-137 releases
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Figure 2-34: Sr-90 releases
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Figure 2-36: 1-133 releases
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Figure 2-37: Te-132 releases

It is important to remember that all results presented here are based on scaled up calculations and
unverified calculation models and should be considered first order scoping calculation results.

2411 Break Size Selection

From the results obtained in the thermal-fluid analysis as well as the RN releases from the fuel
the decision was taken to use the 4mm case as the small break to analyze in the continuation of
the chain. This break size was chosen as it is the largest break for which the blowdown time is
long enough (91 hours) to occur after the peak releases of most of the delayed release RNs.

24.2 Radionuclide Releases from the PHTS to the Reactor Building

The time dependent I-131 releases from the PHTS to the RB for the 4mm and 100mm CIP HPB
break cases are presented in Figure 2-38 and Figure 2-39, respectively. Note that although the
releases from the fuel are somewhat higher for the 100mm break, the releases to the RB are more
than two orders of magnitude smaller due to the fact that PHTS depressurization occurs prior to
the major part of the delayed release from the fuel. Specifically, the 100mm break has 26%
more [-131 release from the fuel to the PHTS than the 4mm break due to the higher temperatures
during the transient (333Ci versus 265Ci); however because the release from the fuel occurs long
after the blowdown is complete much less is released to the RB (0.43Ci versus 155Ci).

For the 4mm break case, it is assumed that no further release of RNs from the PHTS to the RB
occurs after the end of blowdown, which has been determined by the Flownex calculations to be
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about 91 hr. This is because the blowdown extends into the period that the PHTS is no longer
thermally expanding (heating) but rather is thermally contracting (cooling) due the core thermal
transient during passive core cool-down. For the 100 mm break, the blowdown is complete in 11
minutes, well before the radionuclide releases from the fuel reach their maximum values. After
the blowdown, release from the PHTS to the RB continues until 50 hrs due to the thermal
expansion of the helium coolant in the PHTS. The blowdown time and the time to the end of
thermal expansion for the DLOFC are determined from the Flownex calculations. Continued
release from the PHTS to the RB during the PHTS thermal contraction phase is considered in the
barrier allocation task as discussed in Section 3.

Releases for all the modeled RNs at 300hr are shown in Figure 2-40 and Figure 2-41 for the
4mm break, and the 100mm break, respectively. For the 4mm break, the contribution from the
delayed radionuclide release from the fuel (RNs not attached to dust) represents 99+% of the
total release to the RB for all RNs. The release due to the initial dust resuspension is negligible
for all the RN for this small break size. For the 100mm break, the contribution from the delayed
radionuclide release from the fuel (RNs not attached to dust) represents 95+% of the total release
to the RB for Ag, I and Te isotopes, 46% for Cs-137 and 20% for Sr-90. The release due to the
initial resuspension of dust is comparable to the delayed release for Cs-137 and Sr-90 for this
larger break size.

The following conclusions are supported by the results for RN releases to the RB for 4mm and

100mm HPB breaks and confirm 2008 study results:

e The larger break sizes have more release from the fuel to the PHTS yet the smaller breaks
have more release from the PHTS to the RB. The longer blowdown time for the small break
in relation to the time dependent releases from the fuel results in a significantly greater
percentage of the delayed RN release from the fuel being transported to the RB

e For breaks up to 100mm EBS the delayed fuel release dominates for I-131
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Figure 2-38 Time Dependent Release of 1-131 for 4mm Break
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Figure 2-39 Time Dependent Release of 1-131 for 100mm break
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Figure 2-41 Cumulative 300 Hour Releases for 100mm Break
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243 Radionuclide Releases from the Reactor Building to the
Environment

2431 Reactor Building Analysis Case Descriptions

A 4mm and a 100 mm EBS of the Core Inlet Pipe (CIP) were simulated in the ASTEC RB
Model to occur in the Reactor Top Cavity (RTC) compartment. Each of the runs was performed
for 300 hours. A case with no leakages was performed as a sensitivity study. Runs were also
performed for the option of a damper, on top of the stack, closing at 91 and 50 hours respectively
for the 4 mm and 100 mm break which are the times when the delayed release begins). In
addition, sensitivity studies were performed modeling the fission products not attached to dust as
1E-7 m diameter aerosols. ASTEC treats the fission products not attached to dust as gases with
no deposition taking place. Sensitivity studies, treating the fission products as aerosols, were thus
performed to evaluate the effect of fission product deposition on the retention within the reactor
building.

The cases run are listed in Table 2-13

Table 2-13: Cases Run during Analysis

Break Size Leakage Damper ProFdiz(s:itolgorm
Case 1 4 mm No Leakage No Damper Gas
Case 2 4 mm With Leakage No Damper Gas
Case 3 4 mm With Leakage With Damper Gas
Case 4 4 mm With Leakage No Damper Aerosol
Case 5 4 mm With Leakage With Damper Aerosol
Case 6 100 mm No Leakage No Damper Gas
Case 7 100 mm With Leakage No Damper Gas
Case 8 100 mm With Leakage With Damper Gas
Case 9 100 mm With Leakage No Damper Aerosol
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2432 4 mm Break Study

24.3.21 No Damper Case

Phase 1 (t <35 minutes) — Rupture Panels Break

At the time of the break the helium, dust and fission product injection from the Helium Pressure
Boundary (HPB) to the Reactor Top Cavity (RTC) compartment begins. The RTC compartment
begins to pressurize and the temperature and helium mass fraction in the RTC compartment
increases as seen in Figure 2-42Figure2-42, and Figure 2-43. The temperature increase is
relatively sharp in the RTC compartment compared to the remainder of the compartments

(Figure 2-42Figure2-42).

The rupture panel between the Reactor Top Cavity (RTC) compartment and IHX compartment
breaks at approximately 1 minute (Figure 2-42Fisure2-42). Helium, dust and fission product
flow from the RTC compartment to the IHX compartment takes place. The IHX compartment
(and also RTC compartment) begins to pressurize. The helium mass fraction in the RTC
compartment continues to increase (Figure 2-43). The mean mass density in the RTC
compartment decreases due to the gas composition changing from air to a mixture of air and
helium, see Figure 2-43.

At approximate 14 minutes the rupture panels between the IHX and DVSW compartments burst.
The pressure and temperature in the RTC compartment drops to approximately 103.75 kPa, as
seen in Figure 2-42Figure2-42, before increasing again. The pressure in the DVSW, FIP, FHL1
and SIP compartments reach this pressure almost instantaneously due to pressure equalization of
the gas which was in the IHX and RTC compartments. A temperature drop of approximately 2°C
is observed in the RTC and IHX compartments.

Helium, dust and fission product flow from the IHX to the DVSW compartments (and
subsequently to the FIP, FHL1 and SIP compartments) takes place. All compartments within the
reactor building begin to pressurize. The helium mass fraction in the RTC compartment
continues increasing significantly (Figure 2-43), resulting in the density of the gas mixture within
the RTC compartment decreasing further. The density in the IHX compartment increases slightly
due to the flow of gas from the RTC to the IHX, see Figure 2-43.

The rupture panels between the SIP compartment and the environment burst at approximately 35
minutes which results in helium, fission products and dust being transported to the environment.
The reactor building pressures all drop to values close to atmospheric pressure. Reactor Building
pressures show differences with the atmospheric pressure of the environment due to the
contribution of the hydrostatic head term; 0., * /. A temperature drop is observed in all
compartments due to the relief of the gas mixture to atmosphere, the mixture of the helium with
the air in the Reactor Building and the heat dissipation of the gas to the concrete structure.
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Figure 2-43: Helium Mass Fraction and Zone Mass Density at t = 46 minutes

Phase 2 (t <91 hours) — Completion of Blowdown

Once the final rupture panel to atmosphere has opened the temperature in the RTC compartment
begins to decrease due to heat transfer from the gas to the walls. The temperature in the IHX
compartment peaks at 2.8 hours, at which point it begins to decrease. The difference in the
temperature evolution in the RTC and IHX compartments, Figure 2-44, is due to the relatively
higher gas temperature and larger surface to volume ratio in the RTC compartment as compared
to the IHX compartment which results in the temperature in the RTC compartment decreasing at
a relatively faster rate than the IHX compartment temperature.
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Figure 2-44: Zone Temperature Evolution at 8.2 hours

The pressure at the centre of the IHX compartment, Figure 2-45, decreases due to the cooling of
the gas mixture in the IHX compartment. The change in the pressure, using the differential form

of the ideal gas law, can be written as

(0.1) AP _ An
P n

where the molar density in the IHX can be seen in Figure 2-46.
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Figure 2-45: Zone Pressure Evolution and Helium Mass Fraction at 8.2 hours
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Figure 2-46: Zone Molar and Mass Density at 8.2 hours

At the junctions in the IHX compartment there is also a change in the pressure difference due to
the hydrostatic head term: 0,y - &/ . The mass density in the THX compartment decreases, see
Figure 2-46, which is as a result of the change in the air/helium fraction in the IHX compartment,
(Figure 2-45). The helium mass fraction in the RTC compartment and other compartments
increases with the RTC compartment approaching 100% He after approximately 7 hours.

The pressure on either side of a junction is given by on,,e_cem £0.,.° &N . Once the pressure
difference across a junction becomes negative there is inflow through that leakage junction into
the reactor building at which point fission product release through the leakages ends. This occurs
at 35 minutes and 5.5 hours for the lower and upper leakage junctions from the IHX to the
environment respectively as seen in Figure 2-47. Inflow of air through leakages results in a
further driving force for flow through the stack, Figure 2-48.
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Figure 2-48: Junction Mass Flow at 8.2 Hours

Phase 3 (t > 91 hours) — Post-Blowdown

Flow from the RTC to the IHX compartment reverses after blowdown is completed at 91 hours,
see Figure 2-49. This is due to the pressure in the RTC compartment now being lower than in the
IHX compartment. The temperature in the RTC compartment decreases faster as it is cooling at a
more rapid rate than in the IHX compartment and with the end of blowdown the pressure in the
RTC compartment falls below that of the IHX compartment. Due to the reverse of flow between
the IHX and the RTC, the Helium mass fraction of the gas mixture within the RTC starts to
decrease as a result of air from the IHX flowing back into the RTC.
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It should be noted that very small flows are observed post-blowdown, necessitating that the error
bounds across junctions are kept very small in order for the code to obtain convergence.
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Figure 2-49: Junction Mass Flow and Helium Mass Fraction at 138 hours

24.3.2.2 Damper Closure Case

For the case with damper closure at 91 hours the evolution of the break, up until 91 hours, is the
same as for the case with no damper closure.

The option of damper closure at the stack at 91 hours results in a rapid pressure buildup in the
IHX compartment leading to the pressure difference across the upper leakage junctions changing
from negative to positive, as seen in Figure 2-50. Flow reverses for the upper IHX leakage path
so that flow is now to the environment again whilst the lower IHX leakage path continues to
intake air into the Reactor Building as seen in Figure 2-50. The difference in pressure behavior at
the junctions is due to the hydrostatic head term, where the pressures at the lower junction is
given by P comre T Puone '€ - and that at the upper junction is given by . Lo come ~Pone"& 1 The
result is that a natural convection loop in the IHX renews release to the environment through the
upper IHX leakage path, as seen in Figure 2-51.
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Figure 2-50: Pressure Difference at the Junction and Junction Mass Flow at 277

hours
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Figure 2-51: FP’s not Attached to Dust Released through Leakages at 277 hours
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2.4.3.2.3 Dust Distribution and Radionuclide Retention

Results are presented below for the distribution of the dust in the reactor building for the case
with no damper and for the I-131 not attached to dust for the case with and without a damper.
Note that the dust results for the case of damper closing has not been listed due to damper
closing having an insignificant effect on the distribution of the dust due to most dust depositing
before damper closing takes place. Therefore, the results in Table 2-14 can be considered correct
for both the cases with and without the damper

Table 2-14: Distribution of Dust (% of Total Dust Mass Injected) at 300 Hours for a
4 mm Break with Leakage and with No Damper Closing

Dust Dust Dust Total Dust Dust
Deposited Deposited Deposited Deposited in | Suspended
on Walls on Ceiling on Floor Zone in Zone
RTC Compartment 26.11 0.97 < 0.01 27.08 0.31
IHX Compartment 0.05 <0.01 67.64 67.69 0.00
DVS Compartment <0.01 <0.01 3.47 3.47 <0.01
FIP Compartment <0.01 <0.01 0.60 0.60 <0.01
FHL1 Compartment <0.01 <0.01 0.46 0.46 <0.01
SIP Compartment < 0.01 < 0.01 0.19 0.19 < 0.01
RRB Compartment < 0.01 < 0.01 0.01 0.01 < 0.01
ENVIRON1
(Stack Release) <0.01 <0.01 <0.01 <0.01 0.20
ENVIRON2
(Leakages at 20.0 m) <0.01 <0.01 <0.01 <0.01 0.01
ENVIRON3
(Leakages at 0.7 m) <0.01 <0.01 <0.01 <0.01 <0.01

NOTE: No Filtration is modeled in the ASTEC model

In Table 2-15 details of the percentage of RNs retained in the building are provided for various
cases analyzed including the sensitivity cases in which the RNs are modeled as vapors. It can be
seen that the retention for the aerosol case much larger than for the equivalent vapor case. The
reason for this is that there is minimal retention of vapor in the RB as it does not interact with the
surfaces, however the aerosol particles are modeled to interact and adhere to surfaces and hence
have a greater retention factor.
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Table 2-15: Radionuclide Retention (% Retained) in Reactor Building at 300 Hours
for a 4 mm Break

No Leakage, | With Leakage, | With Leakage, | With Leakage, | With Leakage,
No Damper, No Damper, With Damper, | No Damper, | With Damper,
Radionuclides | Radionuclides | Radionuclides Aerosol Aerosol
Modeled as Modeled as Modeled as Sensitivity [Sensitivity Case
Vapor Vapor Vapor Case

Ag-110m 99.52 72.61 92.01 99.65 99.67
Ag-111 99.75 74.67 92.67 99.76 99.78
C-s137 99.97 85.87 95.33 99.93 99.92
1-131 99.91 80.98 94.17 99.87 99.87
1-133 99.76 74.13 92.53 99.77 99.78
Sr-90 99.99 96.01 98.34 99.98 99.96
Te-132 99.88 78.74 93.66 99.85 99.85

NOTE: No Filtration is modeled in the ASTEC model

The effect of the damper closing on the releases via the leak paths can be seen in Table 2-16 for
the I-131 case. The highest leakage to the environment is observed for the damper closing case,
with the stack releases being minimal. This has a large effect on the dose rates, with ground
releases providing larger doses than stack releases. This is further discussed in Section 2.4.4.

Table 2-16: 1-131 Distribution (% of Total I-131 Mass Injected)
at 300 Hours for 4 mm Break

With With With Leakage, With Leakage,
N No Leakage, Leakage, No Damper, With Damper,
Compartment Leakage, :
No Damper No Damper With Aerosol Aerosol
P Damper Sensitivity Case | Sensitivity Case
RTC 48.92 49.39 49.47 88.24 86.73
IHX 4572 10.86 25.94 9.34 10.76
DVSW 3.55 3.59 7.00 1.45 1.48
FIP 0.73 1.52 215 0.38 0.37
FHL1 0.80 8.38 3.42 0.35 0.35
SIP 0.19 7.27 1.11 0.15 0.12
RRB <0.01 <0.01 5.12 <0.01 0.05
ENVIRON1

(Stack Release) 0.09 19.03 0.69 0.13 0.08
ENVIRON2 (Leakage) 0.00 < 0.01 5.14 < 0.01 0.05
ENVIRONS3 (Leakage) 0.00 <0.01 <0.01 <0.01 <0.01

* Compartment nomenclature as per Figure 2-1
NOTE: No Filtration is modeled in the ASTEC model
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2433 100 mm Break Study
2.4.3.31 No Damper Case

Phase 1 (t <4 s) — Rupture Panels Break

High helium mass flow rates into the RTC compartment occur at the beginning of the break
which results in the rupture panels all opening within the first 4 s as seen in Figure 2-52. Due to
the high temperature of the incoming gas the temperature in the RTC compartment increases
rapidly in the first few seconds peaking at a value just over 500 K (227°C ) after 11 s.
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Figure 2-52: Zone Pressure and Temperature Evolution at 9 and 37 seconds

Phase 2 (t < 18 Hours) — Completion of Blowdown

The pressure at the centre of the IHX and connecting compartments, Figure 2-53, decreases
rapidly due to the venting to atmosphere. The molar density in the IHX compartment can be seen
in Figure 2-54.
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Figure 2-53: Zone Pressure and Temperature Evolution at 76 seconds
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Figure 2-54: Zone Molar and Mass Density at 76 seconds

At the junctions in the IHX compartment there is also a change in the pressure difference due to
the hydrostatic head term in the IHX compartment. The mass density in the IHX decreases, see
Figure 2-54, which is as a result of the change in the air/helium fraction in the IHX compartment,
see Figure 2-55. The helium mass fraction in the RTC compartment and other compartments
increases with the RTC compartment helium fraction approaching 100% He after approximately

25 seconds, Figure 2-55.

The pressure on either side of a junction is given by Proe conre T Puone *& -7 . Once the pressure
difference across a junction becomes negative there is inflow through that leakage junction into
the reactor building at which point fission product release through the leakages ends. This occurs
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at 50 — 70 s for the lower and upper leakage junctions to the environment from the THX
respectively as seen in Figure 2-55. Inflow of air through leakages results in a further driving
force for flow through the stack, Figure 2-56.
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Figure 2-55: Helium Mass Fraction and Junction Pressure Difference at 76

seconds
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Figure 2-56: Junction Mass Flow at 76 seconds

The temperatures in the compartments drop at different rates, see Figure 2-57, depending on the
temperatures and the surface area to volume ratio of the compartment.
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The cooling of vent shaft compartments causes the flow from the vent shaft to the environment
to reverse at around 7 minutes, see Figure 2-58, and release of fission products and dust out of
the reactor building to environment ceases at this point. The building pressure begins to increase
slightly due to inflow of air through stack and leakages, see Figure 2-57.
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Figure 2-57: Zone Pressure and Temperature Evolution at 16 minutes
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Figure 2-58: Junction Mass Flow at 16 minutes

At approximately 3.5 hours the flow through the vent shaft reverses again and release through
the stack resumes, see Figure 2-58.
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Phase 3 (t > 18 Hours)

At approximately 18 hours, after blowdown is complete, the flow from the RTC compartment to
IHX reverses. This has important implications for the release to environment of fission products
released from the core during core heat-up as these are released after the mass flow between the
RTC and IHX compartment reverses, see Figure 2-59 and Figure 2-60. Thus, fission products
released into the RTC compartment after the flow reverses are retained in the RTC compartment.
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Figure 2-59: Junction Mass Flow at 22 hours
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Figure 2-60: Mass Release Rates of Fission Products into RTC Compartment as a

Function of Time
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24332 Damper Closure Case

The option of damper closure at the stack at 50 hours results in a rapid pressure build-up in the
IHX compartment leading to the pressure difference across the upper leakage junctions
becoming positive from having been negative prior to damper closure, see Figure 2-61. Flow
reverses for the upper IHX leakage path so that flow is now to the environment again whilst the
lower IHX leakage path continues to intake air into the RB as seen in Figure 2-61. The difference
in pressure behavior at the junctions is due to the hydrostatic head term where the pressures at
the lower junction is given by L. conre T Prone & h and that at the upper junction is given by

P e conre = Paone *&€ 1. The result is that a natural convection loop in the IHX renews release to
the environment through the upper IHX leakage path, see Figure 2-62.
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Figure 2-61: Pressure Difference at the Junction at 83 hours
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Figure 2-62: 1-131 Not Attached to Dust Released Through Leakages at 83 hours
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2.4.3.3.3 Dust Distribution and Radionuclide Retention

Similar observations to those made for the 4mm break case in terms of the effect of aerosols and

damper closing can be drawn from the results of the 100mm break case as shown in paragraph
2.4.3.3.1 and 2.4.3.3.2 above.

Table 2-17: Distribution of Dust (% of Total Dust Mass Injected) at 300 Hours for a
100 mm Break with No Damper Closing

Dust Dust Dust Total Dust Dust
Deposited Deposited Deposited Deposited in | Suspended
on Walls on Ceiling on Floor Zone in Zone
RTC Compartment 0.87 1.80 0.00 2.67 0.49
IHX Compartment 0.13 0.03 41.75 41.91 <0.01
DVS Compartment 0.02 0.12 10.54 10.68 <0.01
FIP Compartment <0.01 0.01 4.22 4.23 <0.01
FHL1 Compartment <0.01 <0.01 10.65 10.66 <0.01
SIP Compartment <0.01 <0.01 4.66 4.66 <0.01
RRB Compartment <0.01 <0.01 <0.01 <0.01 <0.01
ENVIRON1
(Stack Release) <0.01 <0.01 <0.01 <0.01 22.09
ENVIRON2
(Leakages at 20.0 m) <0.01 <0.01 <0.01 <0.01 <0.01
ENVIRON3
(Leakages at 0.7 m) <0.01 <0.01 <0.01 <0.01 <0.01

* Compartment nomenclature as per Figure 2-1
NOTE: No Filtration is modeled in the ASTEC model

Table 2-18: Fission Product Retention (% Retained) in Reactor Building at 300
Hours for a 100 mm Break

No Leakage, With Leakage, With Leakage, With Leakage, No Damper,
No Damper No Damper With Damper Aerosol Sensitivity Case

Ag-110m 99.33 98.51 99.11 99.33
Ag-111 99.97 99.79 99.92 99.98
C-s137 91.84 91.78 91.87 91.90
1-131 99.86 99.67 99.81 99.86
1-133 99.70 98.76 99.45 99.70
Sr-90 87.44 87.52 87.54 87.53
Te-132 99.86 99.68 99.81 99.86

NOTE: No Filtration is modeled in the ASTEC model
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Table 2-19: 1-131 Distribution (% of Total I-131 Mass Injected)
at 300 Hours for 100 mm Break

Comparimen+ [ Notsakage:| Wi Loskage. | W Lesae. | o mpr, et
ensitivity Case
RTC 98.83 98.71 98.71 98.72
IHX 0.73 0.44 0.56 0.70
DVSwW 0.12 0.11 0.15 0.13
FIP 0.04 0.04 0.05 0.04
FHL1 0.10 0.14 0.11 0.10
SIP 0.04 0.09 0.04 0.04
RRB 0.00 0.00 0.05 <0.01
ENVIRON1 0.14 0.33 0.15 0.14
(Stack Release)
ENVIRON2 (Leakage) 0.00 <0.01 0.05 <0.01
ENVIRONS3 (Leakage) 0.00 <0.01 <0.01 <0.01

* Compartment nomenclature as per Figure 2-1
NOTE: No Filtration is modeled in the ASTEC model

244 Radiological Consequences at Site Boundary

2441 Description of Dose Cases

For each break size, a number of offsite dose cases are analyzed to evaluate various RB options,
responses and assumptions regarding the characteristics of the source term. A description of the
cases follows:

Case 1: No RB retention cases

Case 2: RB retention with successful opening and failure to reclose the
Depressurization Vent Shaft (DVS)

Case 3: RB retention with successful opening and closing of the DVS

Case 4: RB retention with successful opening and failure to reclose the DVS

(Case 2) with no RB leakage pathways

The no RB retention cases assume that the release from the PHTS is directly to the environment
at ground level with no RB retention. These cases are selected to create a baseline to understand
the importance of different RB retention characteristics defined in other cases.

For the RB retention cases, a RB is included containing a DVS that opens at set pressure to the
environment at an elevation of 50 m above ground level. Releases from the DVS are referred to
as stack releases. In cases 2 and 3, there are also pathways to the environment at ground level to
simulate RB leakage pathways. Case 4 is a sensitivity case in which the RB leakage pathways
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are not included. This case is included to help understand the effect of the natural circulation
that develops when the leakage pathways are included.

For the cases in which the reclosing of the DVS is successful, the DVS damper closes at a given
time preventing any further release from the RB through the DVS pathway. For the 4 mm break,
the damper closes at the end of blowdown, 91 hrs. For the 100 mm break, the damper closes at
50 hr when the release to the RB from the PHTS ends due to the end of PHTS thermal expansion
and the onset of PHTS thermal contraction.

For each case, various options regarding DVS filtration and the characteristics of the source term
are evaluated. These options for each case are described below:

Option a: No DVS filtration, non-dust RNs are vapor

Option b: DVS filtration, non-dust RNs are vapor

Option c: No DVS filtration, non-dust RNs are 10-7m aerosols
Option d: DVS filtration, non-dust RNs are 10-7m aerosols

Note that all of the initial circulating activity in the PHTS due to resuspension is assumed to be
on dust particles. All of the delayed releases are assumed to not attach to dust and be of one form
only. Hence, depending on the above option, all of the delayed fuel releases were assumed to be
either 100% vapor or 100% aerosol. Mixtures of dust, acrosol, and vapor are considered in the
barrier allocation task as discussed in Section 3.

For the filtration cases, 99% filtration is assumed for all DV'S dust and aerosol releases and 0%
filtration is assumed for all DVS vapor releases. No filtration is assumed for ground level dust,
aerosol and vapor releases in all cases.

For the vapor cases, the delayed release from the fuel enters the RB as vapor. There is no
deposition in the RB assumed for the vapor RNs. The only RB retention for the vapor RNs is the
result of the holdup in the RB due to the transport from one RB volume to the next. Vapor dose
conversion factors (DCFs) are used for I and Te isotopes. Vapor DCFs are not currently
available for the metallic RNs so the default solubility/particulate class DCFs are used for the
metal RNs. The default classes have the greatest DCFs values and result in the largest doses. |
and Te vapor DCFs are approximately a factor of 3 greater than the default particulate DCFs.

For the aerosol cases, the delayed release from the fuel enters the RB as aerosols. Deposition and
settling occur in all compartments for the aerosols. Default particulate DCFs are used for the
aerosols.

The complete set of offsite dose cases with various combinations of break size, RB response,
filtration, and RN form are listed in Table 2-20.
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Table 2-20 Radiological Dose Cases Analyzed

Case No. PHTS HPB RB Retention | RB Leakage DVS Damper | Form of Non- DVS
Break Size Modeled Modeled Reclosure Dust RNs Filtration
1a(4) 4mm No n/a n/a Vapor n/a
1c(4) 4mm No n/a n/a Aerosol n/a
2a(4) 4mm Yes Yes No Vapor No
2b(4) 4mm Yes Yes No Vapor Yes
2c(4) 4mm Yes Yes No Aerosol No
2d(4) 4mm Yes Yes No Aerosol Yes
3a(4) 4mm Yes Yes Yes Vapor No
3b(4) 4mm Yes Yes Yes Vapor Yes
3c(4) 4mm Yes Yes Yes Aerosol No
3d(4) 4mm Yes Yes Yes Aerosol Yes
4a(4) 4mm Yes No No Vapor No
1a(100) 100mm No n/a n/a Vapor n/a
1¢(100) 100mm No n/a n/a Aerosol n/a
2a(100) 100mm Yes Yes No Vapor No
2b(100) 100mm Yes Yes No Vapor Yes
2¢(100) 100mm Yes Yes No Aerosol No
2d(100) 100mm Yes Yes No Aerosol Yes
3a(100) 100mm Yes Yes Yes Vapor No
3b(100) 100mm Yes Yes Yes Vapor Yes

2442 Effective Dose Conversion Factors

For the RB retention cases, four contributions to the dose are considered for each RN, the dose
resulting from ground level aerosol release, the ground level vapor release, the stack level
aerosol release and the stack level vapor release. The differences in the effective dose conversion
factor (eDCF) for each of the four release modes are important in the understanding of the
differences in the doses in the various RB retention cases. For each release mode, the thyroid
CEDE eDCEF is the product of the breathing rate, X/Q weather dispersion factor and the DCF. A
comparison of the thyroid CEDE eDCFs for I-131 is shown in Table 2-19. Differences in the
eDCFs are the result of differences in the X/Q and DCFs. The stack X/Q is an order of
magnitude less than the ground level X/Q and the I-131 vapor DCF is a factor of 3 greater than
the aerosol DCF. The net result is that the greatest eDCF is for the ground level vapor release
and the smallest eDCF is for the stack level aerosol release. These values differ by a factor of
approximately 40.
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Table 2-21 Evaluation and Comparison of Effective Dose Conversion Factors

(eDCF)
X/Q DCF eDCF
(s/m3) (Sv/Bq) (Sv/Bq)
Ground level vapor 2.6E-05 3.93E-07 2.4E-15
Ground level particulate/aerosol 2.6E-05 1.47E-07 8.9E-16
Stack level vapor 1.9E-06 3.93E-07 1.7E-16
Stack level particulate/aerosol 1.9E-06 1.47E-07 6.5E-17

2443 No Reactor Building Retention Cases

The no RB retention cases evaluate the doses due to releases from the PHTS directly to the
environment at ground level with not RB retention. These cases are evaluated to create a baseline
to understand the importance of different RB retention characteristics defined in the other cases,
but also to compare to results obtained from the 2008 study. The results for the no RB retention
cases are listed in Table 2-22

Table 2-22 Radiological Doses for No RB Retention Cases

! Ratio of ! .
Total | . N Ratio of
Break Form of i Thyroid Thyroid 1
o TEDE
ﬁzse Size | Non-Dust R'|131 | CEDE | PAG Limit ! N'Ei?n :;EtEE
: (mm) RNs eg:«:se i (mrem) | to Thyroid i (mrem) TEDE
©) CEDE |
1a(4) 4 Vapor 1.6E+02 i 2.0E+03 2.5E+00 i 1.4E+02 1.8E+02
1c(4) 4 Aerosol 1.6E+02 E 7.3E+02 6.9E+00 E 6.3E+01 4.0E+02
1a(100) | 100 Vapor 43E-01 | 57E+00 | 87E+02 | 4.3E-01 | 5.8E+04
1¢(100) | 100 Aerosol | 4.3E-01 | 21E+00 | 24E+03 | 22E-01 | 1.2E+05

The results indicate that no RB retention is needed in order to meet the offsite dose limits based
on the realistic assumptions used in this study. The dose from the most limiting case, 1a(4) is a
factor of 2.5 less than the thyroid PAG limit. This conclusion differs from the 2008 NGNP RB
Report [1] conclusion for the no RB retention case, in which the thyroid dose limits were
exceeded by a factor of 2. An evaluation of the impact of uncertainties in the mechanistic source
term and dose calculation on the capability to meet the dose limits is assessed in Section 3 in the
course of determining barrier retention allocations.

The smaller, 4mm break size is the more limiting dose case due to the larger releases from the
PHTS. The 4mm release from the PHTS is 160Ci vs 0.43Ci for the 100mm break. The larger
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releases in the smaller break are due to the delayed fuel release occurring concurrent with the
blowdown resulting in a larger transport mechanism from the PHTS as opposed to the majority
of the delayed fuel release occurring post-blowdown in the 100mm break. The 100mm breaks
are not large enough to generate shear force ratios high enough to develop large contributions
from lift-off and resuspension of initially deposited RNs.

As expected, if the RNs that are not attached to dust are assumed to be in the vapor form, the
doses are higher by a factor of 2-3 compared to the aerosol case, consistent with the difference in
the DCFs. The contributions to the total dose for each RN are given in Table 2-21 for the highest
dose case, Case 1a(4). I-131 and Te-132 are the key contributors to both the thyroid CEDE and
the TEDE. For the thyroid CEDE, I-131 and Te-132 contribute 69% and 16% and for the TEDE,
I-131 and Te-132 contribute 50% and 15%, respectively.

Table 2-23 Radionuclide Contributions to Case 1a(4) Dose

Contribution | Contribution
Thyroid to Total to Total
CEDE TEDE Thyroid CEDE TEDE

Radionuclide (mrem) (mrem) (%) (%)
Ag-110m 4.0E-01 1.4E+00 <.1 1.0
Ag-111 3.5E-02 7.0E-01 <.1 0.5
Cs-37 1.0E+00 1.1E+01 <.1 7.9

1-131 1.4E+03 6.9E+01 68.7 50.3
1-133 1.1E+02 6.1E+00 57 44
Sr-90 3.1E-03 8.2E-01 <.1 .6

Te-132 3.1E+02 2.1E+01 15.5 15.3
Subtotal 1.8E+03 1.1E+02 90 80
Other RNs Estimate 2.0E+02 2.7E+01 10 20
Total Estimate 2.0E+03 1.4E+02 100 100

The Case 1a(4) TEDE is a factor of 3 less and the thyroid CEDE is a factor of 5 less than the
similar 2008 no RB retention case doses for a 3mm break. The differences in the doses are due to
many contributing factors which are summarized in Table 2-22. A major contributor to the
reduced dose is the reduction in the RN releases from the fuel by a factor of 4 (265 Ci vs 1040
C1). This can be directly attributed to the lower observed fuel temperatures which in turn are
directly related to the lower operating temperatures. Also, a smaller percentage of the RN
release from the fuel is released from the PHTS (58% vs 82%) in the current results. This
difference is due primarily to differences in the Flownex calculation of the blowdown
temperatures throughout the PHTS compared with simple assumptions made for the PHTS
average temperatures in the 2008 simplified two volume PHTS model. In addition, the scaling
factors are different because the 2008 model only explicitly tracked 2 RNs, Cs-137 and I-131
compared with the 7 RNs in the current model.
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Table 2-24 Comparison of Current and 2008 Study for No RB Retention Case

3mm 4mm

2008 RB Report Current

No RB Retention Case 1a(4)
Core inlet/outlet temperatures, °C 350 °C/950 °C 280 °C/750 °C
SS helium mass in PHTS, kg 3272 3920
Helium mass in PHTS at end of blowdown, kg 25 94
Blowdown time, hr 102 91
Maximum fuel temperature for 1741 1634
fuel release calculations, °C
Cumulative 1-131 release from 1040 265
fuel to PHTS at 300hr, Ci
Cumulative 1-131 release from 850 155
PHTS to RB at 300hr, Ci (82% of fuel release) (58% of fuel release)
Weather X/Q, s/m? 2.3E-5 (425 m EAB) 2.6E-5 (400 m EAB)
1-131 thyroid CEDE DCF for delayed releases, 2.92E-7 3.93E-7
Sv/Bq (FGR11 particulate) (FGR13 vapor)
TEDE scaling factor 1/0.4 =2.5 1/0.8=1.25
Thyroid CEDE scaling factor 1/0.5=2.0 1/0.9=1.11

2444 Reactor Building Retention Cases

For the RB retention cases, the RN releases from the ASTEC RB model are used to
determine the offsite doses. Since ASTEC provides details on stack releases as well as ground
level leakage releases, the stack and ground level contributions to the doses can be evaluated and
then summed to determine the total doses.

The radiological doses for all the RB retention cases are listed in Table 2-25. In Table
2-26 some of the key results from both the no RB retention and the RB retention cases are
succinctly summarized. The key cases are:

e Case la(4) No RB retention case with the highest dose of all cases
e C(ase2a(4) RB retention case with the maximum release

e C(ase3a(4) RB retention case with the maximum dose

e (ase 2d(100) RB retention case with the minimum dose
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Table 2-25 Radiological Doses for RB Retention Cases
Total Ratio of Ratio of
Break RB DVS Form of DVS 1131 Thyroid Thyroid TEDE NRC
Case No. Size Leakage Damper Non-Dust Filtration g CEDE PAG Limit (mrem) TEDE
(mm) g Reclosure RNs Release (mrem) | to Thyroid Limit to
(ci) CEDE TEDE
2a(4) 4 Yes No Vapor No 3.0E+01 | 29E+01 1.7E+02 | 1.9E+00 | 1.3E+04
2b(4) 4 Yes No Vapor Yes 3.0E+01 | 2.9E+01 1.7E+02 |} 1.9E+00 | 1.3E+04
2c(4) 4 Yes No Aerosol No 1.9E-01 7.2E-02 6.9E+04 ! 6.0E-03 | 4.2E+06
2d(4) 4 Yes No Aerosol Yes 2.0E-03 8.5E-04 | 5.9E+06 | 7.7E-05 | 3.2E+08
3a(4) 4 Yes Yes Vapor No 9.1E+00 1.1E+02 4.7E+01 7.2E+00 3.5E+03
3b(4) 4 Yes Yes Vapor Yes 9.1E+00 | 1.1E+02 | 4.7E+01 | 7.2E+00 | 3.5E+03
3c(4) 4 Yes Yes Aerosol No 2.0E-01 3.9E-01 1.3E+04 | 34E-02 | 7.4E+05
3d(4) 4 Yes Yes Aerosol Yes 7.6E-02 3.5E-01 1.4E+04 | 3.0E-02 | 8.3E+05
4a(4) 4 No No Vapor No 1.4E-01 1.5E-01 3.3E+04 | 1.0E-02 | 2.4E+06
2a(100) 100 Yes No Vapor No 1.4E-03 14E-03 | 35E+06 | 4.3E-04 | 5.9E+07
2b(100) 100 Yes No Vapor Yes 8.5E-04 12E-03 | 4.3E+06 | 9.4E-05 | 2.7E+08
2¢(100) 100 Yes No Aerosol No 5.7E-04 25E-04 | 20E+07 ! 34E-04 | 7.4E+07
2d(100) 100 Yes No Aerosol Yes 5.8E-06 2.6E-06 1.9E+09 | 3.6E-06 | 7.0E+09
3a(100) 100 Yes Yes Vapor No 8.3E-04 4.1E-03 12E+06 | 6.4E-04 | 3.9E+07
3b(100) 100 Yes Yes Vapor Yes 2.7E-04 3.9E-03 1.3E+06 3.0E-04 8.2E+07
Table 2-26 Dose Results for Key RB Retention Cases
I-131 1-131 1-131
Dose Analvysis Case Ground Stack Total Thyroid
y Release | Release | Release CEDE TEDE
(Ci) (Gi) (Ci) (mrem) | (mrem)
Case 1a(4)
No RB Retention Max Dose Case 155 n/a 155 2000 140
4 mm break, non-dust RNs are vapor
Case 2a(4)
RB Retention Max Release Case
. 2.8E-5 30 30 29 1.9
4 mm break, DVS damper fails to reclose, no
filtration, non-dust RNs are vapor
Case 3a(4)
RB Retention Max Dose Case
8.0 1.1 9.1 110 7.2
4 mm break, DVS damper recloses, no
filtration, non-dust RNs are vapor
Case 2d(100)
RB Retention Min Dose Case
100 mm break, DVS damper fails to reclose, 2.2E-8 5.7E-6 5.8E-6 2.6E-06 | 3.6E-06
99% filtration of stack particulates/aerosols,
non-dust RNs are aerosol

The RB retention case that results in the maximum I-131 total release is case 2a(4), a 4mm break
with unsuccessful reclosing of the DVS damper, without filtration and the non-dust RNs are
assumed to be in vapor form. The I-131 release for this case is 30Ci compared to 155Ci for a
similar no RB retention case, a reduction of a factor of 5. For the same two cases, the doses are
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reduced by a much larger factor, a factor of about 70 because the release is mainly via the stack
which has a X/Q that is an order of magnitude less than the X/Q for the ground level release in
the no RB retention case. In this case, in which the DVS damper remains open, release through
the stack dominates and ground level release is negligible in comparison. A RB natural
circulation pattern develops that continues release through the stack post-blowdown.

Interestingly, the RB retention case with the maximum I-131 release is not also the case that
results in the maximum offsite doses. The case that results in the maximum offsite doses is case
3a(4), a 4mm break, with successful reclosing of the DVS damper, without filtration and the non-
dust RNs are assumed to be in vapor form. For this case, the total I-131 release is 9Ci but of
these, 8Ci are ground level release. When the damper closes, there is no further release from the
stack but as pressure builds slightly in the RB more release exits through the ground level RB
leakage paths relative to the open damper case. Since, the ground level X/Q is an order of
magnitude greater than the stack X/Q, this case has higher doses than the open damper maximum
release case which had a greater total release of 30Ci. For cases with RB retention, the
maximum offsite thyroid CEDE is 110mrem and the maximum TEDE is 7.2mrem, both well
within dose limits and a factor of approximately 20 less than the no RB retention case.

The RB retention case with the minimum doses is case 2d(100), a 100mm break with
unsuccessful reclosing of the DVS damper, with filtration and the non-dust RNs are assumed to
be in aerosol form. The minimum offsite thyroid CEDE is 2.6E-06mrem and the TEDE is 3.5E-
O6mrem for this case. The thyroid CEDE is 6 orders of magnitude less than the comparable no
RB retention case, case 1¢(100). This large difference is the net result of including a
multivolume RB DVS, RB settling and deposition for the aerosols and DVS filtration of the
aerosols.

2445 Interpretation of Radiological Dose Results

24451 Effect of Break Size on RB Retention Cases

Comparisons of the 4mm Case 2a(4) and 100mm Case 2a(100) dose results for the cases in
which the DVS damper fails to reclose, with no DVS filtration and the non-dust aerosols are
assumed to be vapors are given in Figures 2-63 and 2-64. In the 100mm cases, the contribution
of the initial release that is attached to dust to the total dose is greater than in the 4mm cases
because the blowdown ends before the time of any significant delayed release from the fuel.
Early in the transient, the cumulative dose is greater for the 100mm cases. The dose due to the
prompt release of the RNs attached to dust is greater in the larger break due to the shorter
blowdown and increased rate of transport to the RB during the blowdown. Conversely, the dose
due to the delayed release is much less in the 100 mm break as the blowdown is complete before
any significant delayed release from the fuel occurs. This is consistent with 2008 RB study
results.
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Figure 2-63 Comparison of Time Dependent Thyroid CEDE for 4mm [2a(4)] and
100mm [2a(100)] Breaks
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Figure 2-64 Comparison of Time Dependent TEDE for 4mm [2a(4)] and 100mm
[2a(100)] Breaks
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2.4.45.2 Effect of Filtration

The effect of adding DVS filtration is different for the 4mm vs. 100mm cases and the vapor vs.
aerosol cases. For the 4mm cases, the total release is dominated by the contribution from the
delayed non-dust RN release from the fuel. Therefore, for the 4mm cases in which the delayed
non-dust release is assumed to be in vapor form, filtration has no effect on the 300hr cumulative
doses. For the 4mm aerosol cases when the DVS damper remains open, the effect of the
filtration is to reduce the doses by 2 orders of magnitude consistent with the assumed DVS
filtration efficiency. For the 4mm aerosol cases when the DVS damper recloses, the effect of the
filtration is small since the majority of the release is ground level as discussed above and not
filtered. For the 100mm vapor cases, a small reduction in doses from DVS filtration is evident
since in the 100mm cases a larger percentage of the total release is from the initial release of the
RN that are attached to dust and are filtered. Similar to the 4mm case, the 100mm acrosol cases
with filtration also have doses that are 2 orders of magnitude less.

24453 Effect of RN Form (Aerosol vs. Vapor)

A comparison of the cumulative releases across the fuel, PHTS and RB barriers is made in
Figure 2-65 for the 4mm cases in which the DV'S damper fails to reclose, without filtration and
for the aerosol and vapor options for the non-dust RNs. The 1-131 release from the fuel is
265Ci, from the PHTS is 155Ci and from the RB is 30Ci for the vapor delayed release RN case
and 0.19Ci for the aerosol delayed release case. Deposition and settling of the aerosols in the RB
reduces the releases by about 2 orders of magnitude. Doses for these two cases differ more than
the release difference because the aerosol DCFs are less than the vapor DCFs by a factor of
about 3 for I and Te.
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Figure 2-65 Comparison of Time Dependent Releases across Barriers

24454 Effect of RB Leakage Pathways

Case 4a(4) is a sensitivity case in which the RB leakage pathways are not included. This case is
included to help understand the effect of the natural circulation that develops when the leakage
pathways are included. Case 4a(4) is similar to Case 2a(4), a 4mm break with unsuccessful
reclosure of the DVS damper without filtration vapor case, except that in Case4a(4) there are no
RB leakage paths modeled.

A comparison of the thyroid CEDE for these two cases shows that the dose is higher in the case
with leakage paths by a factor of nearly 200. This increase in dose is primarily due to air intake
to the RB through the leakage paths which provides an additional driving force for release
through the stack. The release from the leakage paths is negligible compared to the stack release
as shown previously in Table 2-24. The sensitivity of the doses to the modeling of the release
paths in the RB ASTEC model requires additional investigation. More study is also needed to
understand buoyancy driven helium-air exchange phenomena.

2446 Comparison of RB Retention Cases to the 2008 Study

A comparison of the RB retention case 2¢(4), 4mm break, DVS opens and never recloses, no
filtration, RNs not attached to dust are aerosols is made with a similar 3mm break case from the
2008 RB Study [1] in Table 2-25. The 2008 RB study [1] case is for a 3mm break, RB damper
opens and never recloses, no filtration, RNs not attached to dust are aerosols with a 20% RB vent

Page 126 of 166

NGNP-PLD-GEN-RPT-N-00007_Rev0.doc October 06, 2009



NGNP-PLD-GEN-RPT-N-00007 Next Generation Nuclear Plant: Plant Level Assessments
Revision 0 Leading to Fission Product Retention Allocations

volume. The break size modeled in the 2008 RB study [1] was 3mm, however, the analysis
showed a similar blowdown time for this case as was obtained in the 4mm case in the current
study. It is therefore viable to compare equivalent cases.

Table 2-27 Comparison of Doses for the 2008 RB Study and the Current Study

3mm 4mm
2008 RB Report Current
Dose RB Retention Case 2c(4)
TEDE, mrem 8.5 .006
Thyroid CEDE, mrem 210 .073

The Case 2c(4) TEDE is a factor of 1400 less and the thyroid CEDE is a factor of 2800 less than
the similar 2008 RB study [1] retention case dose. The differences in the doses are due to many
contributing factors which are summarized in Table 2-26.

The more significant differences are the reduced source term to the RB that was discussed
previously in the no RB retention section and the additional retention of the RB as modeled in
ASTEC compared to the simple RB model used in the 2008 RB study [1]. Another major
contributor to the dose difference is the use of a 50m stack X/Q for the DVS releases in the
current study. The stack X/Q is an order of magnitude less than the ground level X/Q.

Table 2-28 Comparison of Dose Evaluation of 3mm 2008 and 4mm 2009 Cases

3mm 4mm
2008 RB Report Current
RB Retention Case 2¢c(4)
Cumulative 1-131 release from 850 155
PHTS to RB at 300hr, Ci (reduced fuel temperatures)
Cumulative 1-131 release from 18 0.19
from RB at 300hr, Ci (2% of release to RB) (0.1% of release to RB)
Ground level weather X/Q, s/m3 2.3E-5 (425m EAB) 2.6E-5 (400m EAB)
Stack level weather X/Q, s/m3 n/a (all ground level releases) 1.9E-6 (400m EAB)
1-131 thyroid CEDE DCF for 2.92E-7 1.47E-7
aerosols, Sv/IBq
TEDE scaling factor 1/0.4 =2.5 1/0.8=1.25
Thyroid CEDE scaling factor 1/0.5=2.0 1/0.9=1.11
RB DVS compartments (More
retention due to transport and single multi
larger size in multi volume (20,000m3) (23,491m3)
model.)
1-131 RB deposition/settling rate 0.3 0.4-0.01
(1/hr)
. . . yes
R_B cooling, density and el_evatlon (RB in flow from leakage
differences effect on flow in and no -
trom RB considered paths increases stack
. releases)
Stack filtration for I-131 aerosols 95% 99%
RB radioactive decay of RNs yes no
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This comparison supports the following conclusions and insights:

e Lower initial core temperatures evaluated in the current study result in lower initial
RN inventories and lower delayed fuel releases into PHTS for all break sizes in the
current study. This can be directly attributed to the reduction in the ROT.

e Convection cooling for slow depressurization reduces delayed fuel releases into
PHTS in the 2009 results for break sizes less than 10mm due to lower time at
temperature

e Cumulative release of I-131 to RB at 300hr for 4mm breaks are factor of 5 less due to
the combined effects of reduced initial temperatures, convection cooling during
blowdown, and model refinements

e Temperature and density effects are important in the evolution of the flows in the RB

e Multi-compartment ASTEC RB model indicates higher RB retention than single
compartment 2008 model

e Modeling of multiple leakage paths from the RB to the environment allows for
natural circulation of air into and helium air mixture out of the RB

e Assumptions made about the RB operation, RB features and characteristics of the
source term greatly influence the offsite doses

Differences in results from the 2008 RB study [1] are all understood and are attributed to

differences in the design, models, codes and assumptions.

2.4.5 Radionuclide Release Conclusions and Recommendations

From the PHTS and RB analysis it was shown that

The longer blowdown time for the small break results in a significantly greater
percentage of the delayed RN release from the fuel being transported to the RB.
Significant retention of dust and fission products occurs in the RB especially in the RTC
and IHX compartments.

Air intake to the RB through the leakage paths provides an additional driving force for
release through the stack.

Closure of the stack damper significantly reduces the stack release and increases the
leakage release for the 4mm break. The reduction in stack release is less for the 100mm
break because the contribution of the initial release that is attached to dust is more
significant and unaffected by the damper closing.

Releases from the RB are very sensitive to assumptions made regarding the form of the
RN entering the RB (aerosol or gas).

The helium fraction in the RTC and IHX compartments increases to dominant levels
reducing the density and thereby affecting the pressure difference between compartments.
The surface areas of the compartments within the RB play a significant role in the
cooling of the gas which also influences the pressure in the compartments.
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It was observed that temperature and density effects are important in the evolution of the flows in
the reactor building. Counter intuitive behavior can occur due to the pressure and density effects
induced by the lower density helium gas.

Note should also be taken in the design that a multi compartment RBVV will retain more RNs
than a single compartment RBVV.

Further nodalization of the IHX and RRB compartments would be useful to investigate buoyancy
effects that were not included in this study but may contribute to the RN releases.

The key conclusions of the dose evaluation include the following:

¢ Minimum ratios of the PAG thyroid CEDE limit to calculated dose:

o 2.5 for the 4mm no RB retention cases, Case 1a(4)

o 47 for the 4mm RB retention cases, Case 3a(4)

e Minimum ratios of the NRC TEDE limit to dose:

o 180 for the 4mm no RB retention cases, Case 1a(4)

o 3500 for the 4mm RB retention cases, Case 3a(4)

e No RB retention is required to meet dose limits based on realistic assumptions used in this
study.

e The RB retention cases included in this study reduce the offsite doses by 1 — 6 orders of
magnitude relative to the no RB case providing additional margin to limits

e Assumptions made about the RB response and characteristics of the source term greatly
influence the offsite doses.

o Cases in which the DVS damper recloses have higher doses than when it remains
open due to the increase in ground level releases for these cases.

o Cases with DVS filtration result in the same (for the 4mm vapor cases) or lower doses
(for all other cases) especially for cases in which the non-dust RNs are assumed to be
in aerosol form.

o Cases in which the non-dust RNs are assumed to be in vapor form as opposed to
aerosol form have higher doses. Significant RB deposition occurs for RNs assumed to
be in aerosol form.

e Dose is more sensitive to ground level releases than DVS stack releases due to the 50m stack
influence on X/Q.

e For each comparable case, the 100mm break dose is one to four orders of magnitude less
than the 4mm break dose. Results confirm 2008 RB study results that longer blowdown time
for the small break results in a significantly greater percentage of the delayed RN release
from the fuel being transported to the RB and accordingly greater doses.

e Differences in trends for the 4mm and 100mm cases are a result of the larger contribution of
the initial release that is attached to dust to the total dose in the 100mm cases. The RNs that
are attached to dust do deposit in the RB and are filterable when released through the vent
shaft

o For the 100mm vapor case when the damper remains open, filtration reduces the
doses, 20% for the thyroid CEDE and by a factor of 5 for the TEDE. For the 4mm
vapor cases, filtration has no effect on the overall doses.
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o The reduction in doses is significantly larger between the RB vapor case with open
damper and the no RB retention case for the 100mm case than for the 4 mm case.

o The opposite is true for the reduction in doses for the RB aerosol case with open
damper. The 4mm shows a greater reduction in doses relative to the no RB retention
case.

It is obvious from the results that the forms of the RNs in the RB play an important part in the
retention and filtration. Experimental investigation into the form of the RNs (vapor / aerosol) as
well as the adsorption to dust is therefore important.

2.5 EVALUATION OF UNCERTAINTIES AND SENSITIVITIES

The results presented in this section are all based on point estimates of parameters that
are either best estimate when a basis can be established to support it, or conservative in selected
areas where a best estimate is not currently available. An evaluation of the uncertainties in these
parameters was performed as part of the barrier retention allocations as discussed in the
following section.
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3. RADIONUCLIDE BARRIER RETENTION ALLOCATIONS

3.1 OVERVIEW

The purpose of this section is to document the results of the radionuclide barrier retention
allocations which have been developed for use in the conceptual design of the NGNP as well as
in subsequent design and plant life cycle stages. The RN barriers considered are:

Fuel barrier
PHTS Helium Pressure Boundary barrier
Reactor building barrier

For each of these barriers retention allocations were established for the next phase of
design. The scope of the barrier allocation task includes the following:

3.2

Review current and 2008 RB study [ 1] results relative to radionuclide (RN)
barrier retention capability

Evaluate and analyze uncertainties significant for barrier retention allocations
Define an appropriate set of parameters that define the barrier retention capability
Establish the barrier allocations for the next phase of design

Document the assumptions and boundary conditions for the allocations

Propose a process for using and updating the barrier allocations in the future
Define design data needs (DDNs) to aid in the next phases of design

TECHNICAL APPROACH TO BARRIER ALLOCATIONS

The technical approach to barrier allocations was comprised of the following steps.

Step 1
Step 2

Step 3
Step 4
Step 5
Step 6

Review current best estimate dose calculations to define barrier retention
capability

Perform uncertainty analysis on the doses from a selected limiting HPB break
scenario

Define the parameters that describe the barrier retention capability

Assess the uncertainties in the barrier performance parameters

Assign barrier allocation targets and a method for using them in design
Define DDNSs identified in the uncertainty analysis

The first step was to review retention allocations supported by the results of the
radiological dose evaluations presented in Section 2 as well as the results of the dose evaluations
that were developed in the 2008 RB study [1]. As discussed in Section 2, the limiting design
basis events for the NGNP are expected to involve DLOFC scenarios initiated by HPB breaks in
the range of 3mm to 100mm equivalent break size. As shown in both of these studies, among
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these breaks, the radiological doses from breaks on the smaller end of this range are limiting
because of the interaction of the very slow delayed fuel release with the slow rate of
depressurization. Breaks on the larger end of this range are expected to release much less RNs
into the reactor building due to a lack of pressure driving force during the delayed fuel release.
Breaks larger than 100mm are expected to be so unlikely that such breaks would fall into the
beyond design basis event (BDBE) range.

The next step was to perform an uncertainty analysis for scenarios resulting from the
4mm break in the CIP at the top of the RPV in the RTC which was analyzed on a best estimate
basis in Section 2. Of the various 4mm break cases that were analyzed, the following scenario is
selected to perform the uncertainty analysis:

¢ Blow-out panels open and vent gases out the Depressurization Vent Shaft (DVS)
through the 50m stack on the top of the RB assuming no engineered filter in the
shaft

e The DVS damper is closed at the end of blowdown, i.e. when the PHTS reaches
pressure equilibrium with the RB atmosphere

e The plant design and boundary conditions used in the Section 2 evaluations are
valid

Based on its dominance in the evaluation of the thyroid PAG dose which has been
established as the limiting dose metric based on the results of Section 2.4, the focus of the
uncertainty analysis was on [-131

In Steps 3 and 4 the barrier allocation parameters were defined and evaluated with respect
to radiological dose uncertainties. In Step 5 the barrier allocation targets for the next phase of
the design were established as well as a process for using and updating these allocations in the
future. These allocations consider whether barrier allocations based on the evaluation of 4mm
CIP breaks are adequate to account for a more complete set of scenarios and plant conditions that
will be evaluated in future safety analyses as the design matures. Boundary conditions necessary
to maintain the validity of the barrier allocations are also documented as part of this step. In Step
6, DDNs were identified to reduce the major drivers of uncertainty in the ability to meet the
allocation targets.

The results of each step of the barrier allocation process are discussed in the following
sections.

3.3 REVIEW BARRIER RETENTION CAPABILITY SUPPORTED BY
EXISTING STUDIES

The barrier retention capabilities supported by the current radiological dose assessments
are summarized in Table 3-1. The following parameters are used to define the barrier retention
capability:
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Fuel Barrier Fraction of fuel inventory released into PHTS circuit during
normal operation and during the DLOFC transient (the fuel RN
releases during normal operation produce a normal circulating
activity in the PHTS in the form of dust and plateout that is
attached to HPB surfaces at the time of the break. During a
DLOFC there is an additional delayed fuel release that occurs over
the course of several days after the initiating event)

PHTS HPB Barrier  Fraction of RNs existing at the time of the break and released into
the PHTS by the fuel during the DLOFC transient that is released

into the reactor building

RB Barrier Fraction of RNs released into the RB that are released to the
environment

Table 3-1 Barrier Retention Factors from Current Best Estimate Results

Analysis Fraction | Fraction | Fraction | Fraction | Thyroid | Margin
Case (Break o Released | Released | Released | Released | CEDE | Factor to
I-131 . Initial I-131 .
Form Size mm) Inventory (Ci) From From from RB | from RB | (mrem) | Thyroid
Fuel PHTS ground elevated CEDE
level Limit
Fuel 1.29E+07 | 2.05E-05
Vapor 3a(4) Circ. 0 1 5.85E-01 | 5.14E-02 | 6.83E-03 | 1.1E+02 | 4.5E+01
Non-circ. | 2.05E+00 | 2.00E-03
Fuel 1.29E+07 | 2.05E-05
Aerosol|  3c(4) Circ. 0 1 5.85E-01 | 4.81E-04 | 7.79E-04 | 3.9E-01 | 1.3E+04
Non-circ. | 2.05E+00 | 2.00E-03
Fuel 1.29E+07 | 2.57E-05
Vapor | 3a(100) | Circ. 0 1 1.29E-03 | 4.74E-04 | 1.46E-03 | 4.1E-03 | 1.2E+06
Non-circ. | 2.05E+00 | 2.00E-03
Fuel 1.29E+07 | 8.03E-05
Aerosol| 2008(3) | Circ. 0 1 8.17E-01 | 2.12E-02 n/a 2.1E+02 | 2.4E+01
Non-circ. | 3.61E+00 | 2.00E-03
Fuel 1.29E+07 | 8.03E-05
Aerosol| 2008 (1000)| Circ. 0 1 8.33E-04 | 6.57E-01 n/a 6.5E+00 | 7.7E+02
Non-circ. | 3.61E+00 | 2.50E-01

As seen in this table the fuel barrier has the greatest RN retention capability relative to
the other barriers. The HPB barrier is much more effective for larger break sizes than is the case
for breaks in the 3mm to 4mm range. The reactor building appears to have a significant retention
capability; however there is an order of magnitude change between the vapor case and the
aerosol case in the current best estimate analysis. It is already apparent in the current results that
the physical and chemical form of the RNs is a significant source of uncertainty. These and other
sources of uncertainty are explored further in the sections below.
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3.4 RADIOLOGICAL DOSE UNCERTAINTY MODEL

3.41 Overview of Model and Workshop

The approach chosen for the uncertainty analysis is to develop a simple model of the
progression of the RN transport during an accident from the fuel kernels to the environment and
to identify the major uncertainties in each step of the progression. The interrelationship between
the individual steps of the model is shown in the flowchart of Figure 3-1.
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The parameters of this model were quantified in an expert elicitation workshop held at
PBMR from August 24 to 28. Some of the steps (boxes) in the flow chart are dependent on the
fission product (radionuclide) group and accident case. The quantification of the parameters
involves the following steps:

Determine for each parameter, radionuclide group and accident case that:

(a) The uncertainties involved are small and the value determined or used in the
accident analysis are best estimate values. In this case the parameter is quantified with the best
estimate value from the accident analysis without an explicit quantification of uncertainties.

(b) The uncertainties are large or the value determined or used in the accident
analysis are not best estimate values. In this case the parameter is quantified with an uncertainty
distribution.

The model and flowchart was converted into an Excel spreadsheet under the Crystal Ball
software. The Crystal Ball software allows each input parameter in Excel to be represented by an
uncertainty distribution and Crystal Ball then quantifies the uncertainty distribution of the output
parameters by Monte Carlo propagation of the input uncertainties. The barrier allocations are
developed from the Crystal Ball quantification as degree of confidence levels for meeting the
barrier requirements. The top part of the Excel spreadsheet is shown in Figure 3-2.

The quantification of a parameter as an uncertainty distribution involves the following
steps:

1. Determine the as calculated value for the parameters for the all vapor case. As calculated
values for the all aerosol cases are also useful to help define the distributions for the
aerosol and vapor release parameters.

2. Assign percentiles to the as calculated values.

3. Estimate the lower bound percentile (1 %tile or 5 %tile) and the upper bound percentile
(99 %tile or 95 %tile)

4. Estimate the 50 %tile value

5. Characterize the shape of the uncertainty distribution and the distribution parameters
(usually 2) that define it.

6. Determine any correlations between the uncertainties of this parameter to other
parameters in the model (fully correlated, partly correlated, not correlated).

7. The uncertainty assessments will be used to guide the definition of DNNs

The objective of the FP Allocations Workshop was to determine the uncertainty
distributions and fixed values for all the input parameters of the model. The workshop team was
comprised of all the experts responsible for the best estimate analysis of Section 2. The
workshop participants reviewed the uncertainty analysis model presented here, identified key
sources of uncertainty for each parameter in the model, and captured the current best state of
knowledge about the uncertainty in each parameter. A consensus was reached on the uncertainty
distribution for each parameter in the model which is discussed in the next section.
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2009 RN Retention Allocation

Case: 4mm Damper Reclose End of Blowdown, No DVS Filtration
RN Group: 1-131

Net Retention at 300 h:

. . . % Retai'd in Barrier Fraction
Source in| Retained in Not
Barrier Ba Barrier BQ Source in Retained Release to Env. (Bq)| 1.72E+10
Fuel 4.79E+17 | 4.79E+17 100.00% 2.07E-05 Total Thyroid CEDE (Sv)| 5.39E-05
PHTS 9.91E+12| 9.24E+12 93.25% 6.75E-02 Total TEDE (Sv)| 3.63E-06
RB 6.69E+11| 6.52E+11 97.43% 2.57E-02

Fraction of Initial Inv Rel dto Env | 3.59E-08

Net Retention at 300 h:

Sourcein  Retained % Retai'd of
Barrier (ci) Net (Ci) Source in | Release to Env. (Ci)| 4.64E-01
Fuel 1.29E+07  1.29E+07 100.00% Total Thyroid CEDE (mrem)| 5.39E+00
PHTS 2.68E+02  2.50E+02 93.25% | Total TEDE (mrem)| 3.63E-01
RB 1.81E+01  1.76E+01 97.43%
1 2 3 4 5 6 7 8
Total Initial | Initially Release Release Release to | Release to 1-131 Total
Invent'ry in Fuel to PHTS to RB Environm't | Environm't | 300 h Dose | 300 h Dose
(Bg) (Ba) (Bg) (Ba) (Ba) (Bg) (Sv) (sv)
4.79E+17 | 4.79E+17| 7.62E+10 3.68E+07 2.26E+05 2.21E+05 1.43E-11 2.15E-11
In. Rel. BD In. Rel. BD Att. To Dust Elev-Filt Thy CEDE Thy CEDE
Dust 7.27E-13 1.45E-12
TEDE TEDE

5.49E+03 | 4.876-12 | 7.30E-12
Gd-Unfilt | Thy CEDE  Thy CEDE

2.47E-13  4.94E-13
Only part Of tree Shown - 1.84E+07 [ 1.136+05 | 1.10E+05 7.12?12 | 1.25?11
remaining part covers In. Rel. BD Aerosol Elev-Filt | ThyCEDE  Thy CEDE
. B Aerosol 3.63E-13 7.27E-13
Initial fuel releases during post —— 1
blow-down a_nd delayed fuel Ge-unfin | Thy CEDE
releases durlng bIOW'down 1.84E+07 1.13E+06 | 1.10E+06 1.;§E—E10 I z.;E—Elo |
and post blow-down phases P R Sr———
TEDE TEDE

2.60E+04 | 6.156-11 | 9.23E-11 |

Gd-Unfilt | Thy CEDE  Thy CEDE
311612 6.22E-12
TEDE TEDE

Figure 3-2 Top Part of Excel Calculation Model for Uncertainty Analysis

The workshop took several person weeks to prepare, involved about a dozen different
experts, and lasted for a full five day period. The workshop group agreed on the approach to
using the results of the uncertainty analysis to establish the RN retention allocations and was
responsible for completing the entire task on RN barrier allocations. It was agreed at the
workshop to focus on the RN transport of I-131 and to also evaluate the uncertainties associated
with the remaining RNs. The total doses are then estimated using scaling factors to account for
the other RNs.

3.4.2 RN Barrier Allocation Model

The model is defined by the flowchart in Figure 3-1. The model distinguishes between
the initial release comprised of the normal circulating activity and RNs deposited on internal
PHTS surfaces at the time of the initiating event, and the delayed release from the fuel during the
DLOFC transient. For each of these two release types a distinction is made between the
blowdown phase of the release and the post-blowdown phase of the release, yielding four
combinations:
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Initial release during blowdown
Delayed release during blowdown
Initial release during post-blowdown
Delayed release during post-blowdown

The 4mm case has the following event timing:

Time of peak fuel temperatures ~60 hours
End of blowdown 91 hours
Time of maximum I-131delayed release ~90 hours
End of post-blowdown phase 300 hours

Since the blowdown extends past the end of PHTS thermal expansion and into the period
of PHTS thermal contraction, only two divisions, the blowdown and post-blowdown phases are
necessary to characterize the transient.

Larger breaks, such as the 100 mm break, exhibit three distinct release phases, namely
the blowdown phase, followed by the PHTS thermal expansion phase which starts after the
blowdown is complete, and followed by the PHTS thermal contraction phase of the release.
Therefore, the model may have to be modified when applied to larger breaks.

The flowchart is converted to the RN Allocation Quantification Tree which is developed
in a Microsoft Excel™ spreadsheet. Each node or box in the flowchart is numbered. Each
column in the flowchart corresponds to a column in the quantification tree. In the following each
flowchart node is defined.

Box 1: Total Initial Inventory of Fission Products and Contamination Products

(T1D)

Fission Product Groups: Thirteen fission product groups collect fission product
elements that behave chemically similar. They are:

e Noble Gases (Xe) Not modeled, does not contribute to dose

e Alkali Metals (Cs) Only Cs-137 modeled

e Alkaline Earths (Ba) Only Sr-90 modeled

e Halogens (I) Only I-131 and I-133 modeled

e Chalcogens (Te) Only Te-132 modeled

¢ Platinoids (Ru) Not modeled, included in remainder fraction
e Early Transition Elements (Mo) Not modeled, included in remainder fraction
e Tetravalents (Ce) Not modeled, included in remainder fraction
e Trivalents (La) Not modeled, included in remainder fraction
e Uranium (U) Not modeled, included in remainder fraction
e More volatile Main Group (Cd) Not modeled, included in remainder fraction
e Less volatile Main Group (Sn) Not modeled, included in remainder fraction
e Cesium-lodide Cs-I Important in LWRs due to steam environment.
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Cs-I may be significant in NGNP designs involving steam generators in the PHTS in
which case water and steam ingress scenarios will need to be considered.

Contamination:
e Silver (Ag) Only Ag-110m and Ag-111 modeled
e Uranium (U) Not modeled
e Other (Oth) Not modeled

For the dose calculation the radioactive isotopes of the individual elements or groups are
of importance. However for the physical processes that determine the release characteristics,
such as aerosol formation and settling, it is the total mass inventory of each group, including
stable isotopes that determines the behavior. This must be kept in mind when defining the
uncertainty distributions for the release parameters.

Box 2: Initial Radionuclides in Fuel

Fuel here is defined as the fuel pebbles, including the outer graphite layer. The initial
quantity of radionuclides in the fuel is the amount retained in the fuel at the core equilibrium
condition, which is also the initial condition for the transient. The difference between Box 1 and
Box 2 is what is released to the PHTS during normal operation which is addressed in Box 3a .

Box 3a: Initial Release from Fuel to PHTS during Normal Operation

The initial release from the fuel to the PHTS during normal operation involves the
following processes for which uncertainties need to be assessed. The sources of uncertainties for
each bullet are evaluated in the following sections:

e Release from exposed Kernels (SiC and PyC coatings failed) normal operation
Release from defective coated particles (SiC coating failed) during normal
operation

Release from intact kernels during normal operation

Diffusion of Ag and other contamination during normal operation

Fission of U contamination outside coated particles during normal operation
Activation of other contamination outside coated particles during normal
operation

e Release from graphite to PHTS during normal operation

Box 3b: Delayed Release from Fuel to PHTS during Blowdown

The processes for which uncertainties need to be assessed are:

e Delayed release from exposed kernels during blowdown
e Delayed release from fission of U-contamination outside particles
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Delayed release from defective particles during blowdown
Diffusion of Ag and other contamination during blowdown
Delayed release from intact kernels during blowdown
Delayed release from graphite to PHTS during blowdown

Box 3c: Delaved Release from Fuel to PHTS during Post-Blowdown

The processes for which uncertainties need to be assessed are:

e Same Items as 3b plus:
o Release due to effects of oxidation in graphite or coatings

Box 4a: Release from PHTS to RB from Initial Release during Blowdown

The processes for which uncertainties need to be assessed are:

e Initial aerosol, vapor and dust circulating activity in PHTS
¢ Initial non-dust circulating activity
o Initial non-dust circulating activity as aerosols
o Initial non-dust circulating activity as vapor
o Resuspension of deposited dust during blowdown
e Plateout Activity
o Initial plateout activity in PHTS
o Lift-off/revolatilization of plateout activity forming aerosols during
blowdown
o Lift-off/revolatilization of plateout activity forming vapors during
blowdown
e Transport of RNs to the RB during blowdown

Box 4b: Release from PHTS to RB from Initial Release during Post-Blowdown

The processes for which uncertainties need to be assessed are:

e Same Items as 4a plus:
o Transport of RNs from the core to the RB during post-blowdown

Box 4c: Delaved Release from PHTS to RB during Blowdown

The processes for which uncertainties need to be assessed are:

Delayed RN release to PHTS attaching to dust

Delayed RN release to PHTS forming aerosols

Delayed RN release to PHTS remaining as vapors
Transport of RNs from the core to the RB during blowdown
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Box 4d: Delayed Release from PHTS to RB during Post-Blowdown

The processes for which uncertainties need to be assessed are:

e Same Items as 4c plus:

o Transport of RNs from the core to the RB during post-blowdown

Box 5a: Elevated Release RBVYV via DVS Shaft to Environment

The processes for which uncertainties need to be assessed are:
¢ Distribution of RNs into dust, aerosol, and vapor
e Particle size distribution of dust and aerosol

e Radioactive decay, deposition, and plateout out the release path

Box 5b: Ground Level Release via RB leakage to Environment

The processes for which uncertainties need to be assessed are:

¢ Distribution of RNs into dust, aerosol, and vapor
e Particle size distribution of dust and aerosol
e Radioactive decay, deposition, and plateout out the release path

Box 6a: 300 hr Thyroid CEDE

The processes for which uncertainties need to be assessed are:

Radioactive decay

Daughter buildup

X/Q for elevated release

X/Q for ground release

Building wake factor

Building wake factor for elevated release
Building wake factor for ground release
Breathing rate

Dose conversion factor for dust

Dose conversion factor for aerosols
Dose conversion factor for vapors
Scaling factor for total dose from I-131 dose

Box 6b: 300 hr TEDE

The processes for which uncertainties need to be assessed are:

e Same as Box 6a
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3.5 BOUNDARY CONDITIONS

Boundary conditions define a minimum set of plant capabilities that are necessary to
make the barrier allocations valid. It was decided at the workshop that the barrier allocations
shall be consistent with PBMR safety design philosophy and the 2008 RB study [1]. Some of the
most important requirements for barrier allocation considerations include the following:

e Need to have a building and means of controlling releases during normal
operation; this will likely lead to an HVAC with controlled pressure zones which
may or may not have an accident mitigation role

e Need to provide a pressure relief capability and structural features to protect RB
and all the safety related SSCs for design and beyond design basis events

e Will need to control leakage post blowdown to limit air ingress to building and
post blowdown releases

e Need for filtration should not be driven by the allocations and will be resolved in
later stages of design

e All retention allocations are based on the current NGNP 500MW 750°C ROT
design, including the PHTS and RB layouts. Changes in these factors will lead to
changes in the retention allocations

e It is assumed that a DLOFC from a 4mm break in CIP near RPV in reactor cavity
of RB will represent a bounding design basis event for the NGNP design

e Plant response same as in current RN dose evaluation

e Blowout panels open to relieve RB pressure and exhaust release out the
depressurization vent shaft (DVS)

e DVS damper is closed at end of PHTS blowdown for the damper closed cases and
is left open for the damper fails open cases

e No filtration and no filtration flow resistance is assumed for the DVS release

e RB HVAC is assumed to be switched off at time of break so that RB retention is
only influenced by passive NGNP characteristics

3.6 EVALUATION OF UNCERTAINTIES

During the workshop, the uncertainties associated with radionuclide transport were
assessed across each barrier. This included an identification of the sources of uncertainty
including parameters in the current calculations, factors not considered in the current
calculations, limitations imposed by boundary conditions of the analysis, and the uncertainties
associated with the early state of design of the NGNP. A discussion of the results of this
evaluation is provided for each barrier in the sections below.
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3.6.1 Uncertainties in Releases from Fuel Barrier

When considering the RN releases from the fuel, both the uncertainties in the fuel
temperature analysis during the transient as well as the uncertainties associated with the RN
releases under those temperatures have to be considered. The major parameters of the fuel
release calculation that are important to consider in the evaluation of fuel release uncertainties
include:

e Major factors leading to fuel temperature uncertainties
o Core bypass and leak flows
o Added pressure drops in by-pass channels
o Core thermal dispersion
o Pebble bed heat transfer coefficients
o Reflector and core graphite conductivity
e Major factors leading to RN release uncertainties
o Transport parameters (diffusion coefficients and sorption isotherms)
o Heavy metal contamination
o Fuel failure fractions as a function of time at temperature, burn-up, etc.

The uncertainties assigned to the release of I-131 during the transient are based on
previous parametric Monte Carlo analysis performed on the VSOP-TINTE-GETTER chain. The
distributions for delayed fuel release fractions for delayed fuel release during blowdown and
post-blowdown phases in Figure 3-3 and Figure 3-4, respectively. They are characterized as log-
normal distributions with mean values linked to the best estimate values calculated in Section 2,
having values of 1.9E-5 and 1.4E-6 for the blowdown phase, and post-blowdown phase
respectively. The post-blowdown values are much smaller because the core temperatures have
significantly decreased below the peak by the time of the end of blowdown. The lognormal
range factors (ratio of the 95%ile to 50%tile) for each distribution is 20.

Name: [FF_FL_DR_ED EF e

Fuel Release Fraction - Delayed Release during BD

.
= 555 = 7.27E-05
= Mean =1.91E-05
i | WEE=182E07 |
0.00E+00 2 00E-03 4 N0E-05 5.00E-05 §.00E-05 1.00E-04

Location ID.DDE +00 E™ B |1 B2ZE07 E7 95 |T.2?E-I35 EY

Figure 3-3 Uncertainty Distribution for Fraction of I-131 Released from Fuel
During Blowdown
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Name: [FF_FL_DR_PB ETIE

Fuel Release Fraction - Delayed Release During PB

.
= 95% = 5 45E 05
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Figure 3-4 Uncertainty Distribution for Fraction of I-131 Released From Fuel

During Post-Blowdown

The uncertainty distributions assigned to the fuel release fractions are based on the
following additional boundary conditions:

Fuel quality must be equal or better than the current German qualified fuel

Fuel temperatures during the transient do not exceed 1700 °C

Burnup measurement and on-line refueling is sufficiently accurate that the
limiting fuel burnup is not exceeded

There is no water ingress during the event

In the 4mm break analysis the maximum temperature of the fuel does not exceed
the temperature at which Sr90 release becomes dominant. This uncertainty is
added as an uncertainty in the scaling of the 7 isotopes to the overall TEDE

As a result of analyzing the uncertainties associated with the fuel barrier performance, the
following items were identified as possible candidates for future DDNs:

Fuel qualification

Core by-pass and leak flow analysis and measurements during hot conditions
RN release from fuel physical phenomena investigation

Graphite (including fuel sphere graphite) thermal conductivities under irradiation
Fuel graphite impurities

3.6.2 Uncertainties in Releases from PHTS HPB Barrier

The evaluation of uncertainties associated with the release of RNs inside the PHTS
circuit into the RB is dependent on the phase of the event i.e. blowdown or post-blowdown. The
uncertainty associated with the initial inventory at the time of the break must also be considered.
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Areas of uncertainty that are considered:

¢ Initial inventory at time of break
o Circulating and non-circulating activity
o Form of the circulating I-131 (dust / vapor / aerosol)

¢ Blowdown Phase
o Re-suspension of normal operation plated-out or deposited I-131
o Thermo-fluid behavior (blowdown and thermal expansion)
o Retention of delayed release I-131 in the PHTS
o Form of delayed release I-131 (dust / vapor / aerosol)

e Post-blowdown Phase
o Thermo-fluid behavior (thermal contraction, diffusion, natural circulation)

Note that the thermo-fluid behavior during the post-blowdown phase is not currently
modeled in the models. This effect is however considered in the uncertainty analysis.

For evaluating the RN initial inventory during the time of the break the following sources
of uncertainty were identified:

e Circulating vs. non-circulating activity
o Analyses of AVR data and experiments have indicated that most activity
is either plated-out or deposited. Circulating activity within the PHTS
during normal operation was found to be of the order of 1%
e Dust vs. non-dust
o Significant uncertainties in sorption interaction between RNs and graphite
o Previous experience (e.g. AVR data) has not been sufficiently analyzed to
determine I-131 dust ratios
o Assumption is that there is no knowledge on the dust vs. non-dust
distribution of I-131 during normal operation (flat distribution)
e Vapor vs. aerosol
o Lack of knowledge of I-131 chemistry in a dry helium/air environment
o Section 2 analysis only considers vapor form
o Flat distribution between 0 and 1 represents state of knowledge about
fraction of initial and delayed releases of I-131 as vapor vs. aerosol

For evaluating the releases from the PHTS during the blowdown phase, the following
sources of uncertainty were identified:

e Re-suspension of plated-out and deposited I-131
o Flownex calculations indicate shear force ratios < 1 and hence
insignificant liftoff/resuspension. There is some uncertainty involved in
this analysis, but it is seen as relatively small
e Thermal-fluid behavior
o Low coolant flow rates close to the limit of the calculational model
o Flow path reversal and directional changes
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o Buoyancy not modeled
o Time of completion of blowdown
o Transport of I-131 from the core to the break location
e Retention of delayed release I-131 in the PHTS
o Low surface temperatures and its effect on the plate-out rate
o Low flow velocities effect on both plate-out and deposition rates
o Form of the I-131 effect on the plate-out and deposition
o Reduction in effective surface area available as flow paths bypass certain
components (e.g. [HX)
e Form of delayed release I-131
o Less time available for I-131 sorption to the dust than in normal operation
o Sorption is more likely on deposited dust than circulating dust
o Most delayed release of [-131 is expected to reach the RB in non-dust
form

For evaluating the releases from the PHTS during the post-blowdown phase, the
following sources of uncertainty were identified:

e Thermal-fluid behavior

o Time of blowdown exceeds the time of peak core temperatures; PHTS is
in state of thermal contraction at end of blowdown

o Low coolant flow rates close to the limit of the calculation model and
hence estimates of the time to complete blowdown are uncertain

o Buoyancy effects and diffusion not yet included in computer models but
considered in this uncertainty analysis

o Transport path of [-131 from the core to the break location and extent of
mixing in PHTS circuit is uncertain

o Uncertainty distribution applied based on engineering judgment to bound
the flow rates for gas-exchange

o Plate-out and settling along release path if gas-exchange occurs is not
modeled in computer models but is expected; magnitude of these
phenomena is uncertain

As a result of these sources of uncertainties, uncertainties in the fractional releases from

the PHTS were evaluated. Some of the key uncertainty distributions are provided in the
following Figures.
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Figure 3-5 Uncertainty distribution on the Fraction of the Delayed Fuel Release
Attached to Dust in the PHTS Prior to Release
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Figure 3-6 Uncertainty Distribution on the Fraction of Non-Dust Delayed Fuel
Release That is Vapor
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Figure 3-7 Fraction of RNs as Vapor Released to the RB During Post-Blowdown

Items for further study and consideration of future DDNs for the PHTS HPB barrier
include:

e Computer Code validation

e Reduce uncertainty on distribution of I-131 and other radiologically significant
RNs on dust, aerosol, and vapor as well as dust and aerosol size distributions

e Reduce uncertainty on plate-out, settling, and other PHTS retention phenomena

e Reduce uncertainty on PHTS-RB gas exchange phenomena

e Reduce uncertainty on the formation, size and chemical interaction of metallic
dust

e Reduce uncertainty in heat transport coefficients of the pebble bed and other
thermal-fluid factors, such as component flow restrictions

3.6.3 Uncertainties in Releases from Reactor Building

The major sources of uncertainty identified in the workshop for the RB barrier included
the following items:

e Same uncertainties about distribution of RNs on dust, vapor, and aerosol as in
PHTS as well as how these distributions change after release into the RB
¢ Uncertainty in dust size distribution input leading to uncertainty in dust deposition
rates
e Location and size of reactor building bypass leakage
o Leaks from RBVYV direct to environment
o Leaks from RBVV into other RB compartments
o Ingress of air into building and impact on gas mixtures
e Timing of DVS damper closure
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e Uncertainties in RN retention phenomena for each form of RN (dust, vapor,

aerosol)
e Model Uncertainties
e Limited validation of ASTEC for HTGR conditions

As a result of these sources of uncertainty, the uncertainty distributions developed for key
aspects of the release calculation are shown in the following figures.

Name: [FR_RB_IR_v_UF_PB BRI

Fraction I-131 Yapor IR or DR Rel. from RBE Curing PB

.
= 95% = B.42E 02
= Mean = 5.00E-02 ‘
& 57 = 1 55E 02
0 .00E+00 2 00E-02 4 00E-02 G .00E-02 & 00E-02 1 00E-01

Minimum [0 00E-+00 % Likeliest[5.00€ 02 F  Mavimum [1.00E-07 5

Figure 3-8 Uncertainty Distribution for Fraction of I-131 as Vapor Released from
RB at Ground Level Post-blowdown

Name: [FR_RE_IR_AE_UF_FE = |

Fraction of I-131 Aerosol IR or DR Rel. from RB During PB

.
= 55% = 1.60E-03
= kean = 5.00E-04
i WEx=18%E05
D.DDIIE+DD 3.DDiE-D4 B.DD;E-D4 Q.DDiE-D4 1 .20;5-03 1 .SDiE-DS 1 .BDiE-DS

Location ID.DDE+DD ET R |1 BEE-DR ET 95% |1 JBBE-03 ET

Figure 3-9 Uncertainty Distribution for Fraction of I-131 as Aerosol Released from
RB at Ground Level Post-blowdown
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These distributions are based on the following additional boundary conditions that were
identified during the RB barrier session of the workshop.

e A multi-compartment building with blow-out panels must exist

e DVS has a tall (> 50m) stack and an effective closure mechanism with minimal
leakage compared to the normal RB leak rates

e The building leak rate is close to the assumed commercial grade leak rate

e The surface area to volume ratios of the building are comparable to what was
modeled

e The HVAC system and systems injecting Helium into the PHTS shut down at the
time of the break, i.e. these system does not negatively influence the releases

e The PHTS break does not adversely impact the RB an safety classified SSCs —
e.g., no consequential second break scenario exists

For future consideration the candidates for future DDNs include the following for the RB
barrier:

e Computer code validation

e Reduce uncertainty on outside air-RB-PHTS gas exchange phenomena

e Reduce uncertainty on changes in the distribution of I-131 and other
radiologically significant RNs on dust, aerosol, and vapor as well as dust and
aerosol size distributions in the RB

e Reduce uncertainty on plate-out, settling, and other retention phenomena along
the two major release paths: DVS with damper open and RB leakage with DVS
closed.

3.64 Uncertainties in Radiological Dose Calculation

Dose calculation performed in this study are based on Regulatory Guide rules and
definitions of the NRC TEDE and the PAG CEDE in a manner consistent with realistic
assumptions and a generic site. While there are considerable uncertainties in the dose calculation
due to lack of defined site, weather variability, etc. these uncertainties can only be quantified for
specific sites. The decision was made at the workshop to treat dose parameters as fixed values.
The most significant uncertainty that can be influenced by the design is the extent to which I-131
is indicative of the total dose. So the only uncertainty distributions assigned for this part of the
release and dose calculation is those in the scaling factor used to predict total dose from I-131
dose. One such uncertainty factor was needed for each the thyroid CEDE and the TEDE. These
distributions are shown in the following figures.
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Figure 3-10 Uncertainty in the Scaling Factor to Calculate Total Thyroid CEDE
from 1-131 Thyroid CEDE
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Figure 3-11 Uncertainty in the Scaling Factor to Calculate Total TEDE from 1-131
TEDE

The following items were identified for future consideration as DDNs for the radiological
dose part of the model.

e Need to confirm applicability of existing Dose Conversion Factors (DCFs) for
HTGR source terms including impact of:
o Distribution of RNs as dust, aerosol, and vapor
o Particle size distributions for dust and aerosol
o Possible chemical reactions during transit to dose receptor

3.6.5 Uncertainty Distributions Assigned to Crystal Ball Input Variables

A summary of the input distributions for all the independent variables that were
developed for the Crystal Ball model is provided in Table 3-2.
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3.7 BARRIER ALLOCATION RESULTS

3.71 Summary of Barrier Allocations

Barrier retention allocations were assigned in terms of following parameters:

e Limits on fuel release fractions during normal operation and transient
e Limits on PHTS HPB release fraction

e Limits on RB release fraction

e Limits on composite 3-barrier release fraction across 3 barriers

e Factor Margins to PAG and 10CFR50.34 dose limits

Design target values for each parameter are given in terms of:

e Best estimate based on mean and 50%tile values
e Upper bounds based on 95%tile
e Lower bounds based on 5%tile

Each barrier expected to meet or exceed targets in next phase of design. The limits on the
composite 3-barrier release fractions are used to assess integrated performance of all three
barriers and to facilitate barrier performance trade-offs in future design stages. This parameter is
given a higher priority than the individual barrier allocations as this parameter controls the
margins to the dose limits. The margins to dose limits are used to provide allowance for risks
due to:

e Evolution of design
e Improvements and changes to analysis models and data
e Licensing acceptance

A summary of the barrier allocations for the above listed parameters is provided in Table
3-3 and Figure 3-12. Table 3-3 includes the mean values of the uncertainty distributions that
were developed as well as selected percentiles. It can be seen that the fuel, as a barrier, provides
the most important contribution to retention. For the fuel release parameter, there is more than a
factor of 300 spread between the 5%tile and 95%tile values. This uncertainty is driven by the
input uncertainty on the delayed fuel releases during blow down and post-blowdown phases of
depressurization from DLOFC resulting from a 4mm break. The HPB barrier is seen to provide
somewhat more than a factor of 2 reduction in the release for these same 4mm breaks with more
than a factor of 4 spread between the 5%tile and 95%tile values. The RB barrier provides more
than a factor of 50 reduction in the release with a factor of 30 spread between the lower and
upper percentiles. As seen in Figure 3-12, the composite retention capability of all three barriers
is nearly 7 orders of magnitude reduction in the release against the baseline of the RN inventory
and it is clear that, while the fuel retention is most important component, all three barriers
contribute to this result.
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Table 3-3 RN Retention Barrier Design Target Allocations for
NGNP Conceptual Design

Parameter Mean 5%tile | 50%tile | 95%tile
Fuel Release Fraction 2.05E-05 | 2.68E-07 | 4.10E-06 | 7.87E-05
PHTS HPB Release Fraction 4.40E-01 | 1.47E-01 | 4.19E-01 | 8.00E-01
Reactor Building Release Fraction 1.73E-02 | 1.34E-03 | 1.31E-02 | 4.68E-02
Composite Three Barrier Release Fraction 1.64E-07 | 4.73E-10 | 1.86E-08 | 6.00E-07
I-131 Release to Environment - Curies 2.12E+00 | 6.05E-03 | 2.39E-01 | 7.81E+00
Margin Factor to 5rem Thyroid CEDE PAG Limit [Note 1] 1.85E+02 | 7.77E+04 | 1.67E+03 | 4.99E+01
Margin Factor to 25rem TEDE DBA Dose Limit [Note 1] 1.16E+04 | 4.99E+06 | 1.06E+05 | 3.14E+03

Note 1: These values are obtained by dividing the dose limit by the corresponding percentile of the dose
uncertainty distribution; hence the higher doses have lower margins to the limit

Composite Three Barrier Release
Fraction

Reactor Building Release Fraction

Fuel Release Fraction

el
el
el
H

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00
Non-Retention (Release Fraction)

Figure 3-12 Mean Values of Barrier Release Fractions

3.7.2 Uncertainties in Barrier Performance

Uncertainties in the barrier allocation parameters are given in Table 3-3 in terms of mean
values and selected percentiles of the uncertainty distributions obtained using Crystal Ball using
straight Monte Carlo sampling and 100,000 trials. Further information on uncertainties is
provided in the following figures for each parameter.
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Figure 3-13 Fuel Barrier Release Fraction Uncertainty Distribution
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Figure 3-14 PHTS HPB Barrier Release Fraction Uncertainty Distribution
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Figure 3-15 Reactor Building Barrier Release Fraction Uncertainty Distribution

100,000 Trials Frequency Yigw 97.042 Dizplayed
—-raction of Inttial Inv Released to Envy accross all bamers
0.50 0,000
0.40 40,000
= T
= T
‘S 030 30,000 S
fan] [
L} I
E =
(L 020 35% = 6.00E-O7 - 20,000 %
hean = 1.64E-07
b -10
010 10} 10,000
o.ocfp ; . . —q o
0.00E+00 2 O0E-07 4 00E-07 6.00E-07 8.00E-07 1.00E-06
P [Anfinity Cemtainy: [100000 % g |Infinity

Figure 3-16 Composite Three- Barrier Release Fraction Uncertainty Distribution
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Figure 3-17 Uncertainty Distribution on the Factor Margin to the Thyroid PAG
Dose Limit

3.7.3 Use of Barrier Allocations in Future Design Phases

The following conclusions and insights from the Barrier Allocation task will shape future
design phases of the NGNP:

¢ Barrier retention factors are design targets to guide next phase of NGNP design;
not to be confused with regulatory requirements.
e There is an expectation that barrier retention capabilities will be evaluated in the
next design phase and changes are expected due to:
o Design changes and greater level of detail in design
o Improvements in state of knowledge due to improved and more detailed
models and data
o More complete evaluation of HPB break sizes, locations, and plant
response scenarios; treatment of more radio-nuclides; limiting scenarios to
set allocations likely to change
e Barrier retention allocations may change as design is optimized to maintain
margins against limits
e Margins to limits may be reduced if warranted by reduced uncertainties in
performance
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e Barrier allocations completed are based on HPB break size and location expected
to be limiting for design basis events for an assumed set of boundary conditions
defined in this section

¢ RN retention allocation for reactor building, a factor of 10 reduction in source
terms for [-131 and Cs-137, have been enhanced in this study by factor of more
than 5 relative to that specified in the 2008 RB study [1]

e RN retention allocation for the HPB is rather limited for small breaks but it is
important to include to demonstrate barrier defense-in-depth capability; HPB
barrier retention is more significant for larger breaks due to lack of pressure
driving force during delayed fuel release based on the 2008 and 2009 study results

e RN retention allocation targets for the fuel augments the fuel performance
specification

e Thyroid PAG dose dominated by delayed fuel releases at ground level from RB
that occur post-blowdown after DVS damper is closed

e Methodology for evaluating barrier performance and barrier allocations should be
updated for each future design stage to maintain adequate margins against dose
limits

It is rather noteworthy that the potential releases during the post-blowdown phase of the
4-mm DLOFC were found to dominate the results and provide the limiting conditions for
determining the barrier allocations. This is noteworthy because in the point estimate evaluations
provided with the computer models in Section 2, there is no release predicted from the HPB into
the RB following blowdown for the 4mm break because the core temperatures are decreasing
and the PHTS helium is contracting during this period. It is noted however that in the point
estimate analysis, RN transport from the RB to the environment continues post-blowdown and
makes a significant contribution to the dose. In the uncertainty analysis, based on engineering
judgment, some RN transport into the RB was postulated due to phenomena such as diffusion
and natural convection that were not modeled in the computer programs. These RNs had been
release from the fuel in the computer simulations but were retained in the PHTS due to lack of a
modeled transport mechanism. This insight points to the importance of future work to resolve
the uncertainties associated with gas-exchange phenomena.

3.74 Topics for Further Study

Topics for Further Study include the following:

e Improved mechanistic analysis of buoyancy and natural circulation phenomena on
gas exchange among the barriers and resulting impacts on core oxidation and RN
releases from HPB and RB

e Improved understanding of the distribution of RNs between dust, vapor, and
aerosol forms in the PHTS and in the RB

e Improved understanding of RN transport phenomena for dust, vapor, and aerosol
in the PHTS and RB including those associated with settling, plateout, and
radioactive decay

e Expansion of the range of leak and break locations and variations on plant
response for a full spectrum of LBEs
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e More realistic treatment of lift off and dust resuspension for beyond design basis
larger HPB breaks ( >100mm)

Inclusion of filter resistance and aerosol formation in RB model

Improved Coupling of Core, PHTS, and RB models

Better characterization of Dose Conversion Factors for HTGR source terms

Improved understanding of the contribution of nuclides other than those modeled
in this study.

A summary of the most important candidates for future consideration as DDNS is
provided as follows:

e Fuel Barrier
o Current fuel performance demonstration
(currently covered by DDN NHSS-01-01, DDN NHSS-01-02)
e HPB Barrier
o Computer code validation
o Reduce uncertainty on distribution of I-131 and other radiologically
significant RNs on dust, aerosol, and vapor as well as dust and aerosol size
distributions
o Reduce uncertainty on PHTS-RB gas exchange phenomena
o Reduce uncertainty on plate-out, settling, and other retention phenomena
e RB Barrier
o Computer code validation
o Reduce uncertainty on outside air-RB-PHTS gas exchange phenomena
o Reduce uncertainty on changes in I-131 distribution in RB
o Reduce uncertainty on plate-out, settling and other retention phenomena
e Radiological Dose
o Confirm applicability of DCFs for HTGR releases for dust, aerosol, and
vapor

Final determination and definition of necessary DDNs will be undertaken as part of
forthcoming conceptual design studies.
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DEFINITIONS

None
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ASSUMPTIONS

All assumptions are stated in the report where they are used.
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APPENDICES

APPENDIX A: FINAL DESIGN REVIEW PRESENTATION TO BEA
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