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Electron and Photon Coincidence Measurements 
 

131mXe                       X-Ray (30 keV)   +     CE (129 keV) 
 
133mXe                       X-Ray (30 keV)   +     CE (199 keV) 
 
                                  X-Ray (30 keV)   +     β+CE (45-391)  
133Xe 
                                  γ (81 keV)           +      β (0-346 keV) 
 
135Xe                         γ (250 keV)         +      β (0-910 keV) 

63% 

37% 

Radioxenon Detection 
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• Radioxenon Detectors Based on Beta-Gamma Coincidence Measurements 

•Low Background 

•High Sensitivity 

•Multiple PMT’s, not easy to maintain energy calibration for a long time 

Radioxenon Detection 
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The Swedish Automatic Unit for Noble gas Acquisition 
(SAUNA) 

Automated Radioxenon Sampler/Analyzer (ARSA) 



•Two-dimensional beta-gamma coincidence spectrum 

•Background contribution from Compton continuum  

Radioxenon Detection 
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Schematic diagram of the phoswich detector. All dimensions are in mm. 

Actively-Shielded Phoswich (ASP) Detector 

• Detector Design 

•Detection of beta/conversion electron in Plastic Scintillator (BC-400) 

•Detection of X-ray/gamma-ray in CsI(Tl) scintillator 

•Suppression of Compton-events using BGO scintillator (anti-coincidence with CsI(Tl)) 
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• Major gamma interaction scenarios in the phoswich detector from 
internal and external sources  

Compton Suppression Mechanism in the ASP Detector 

When accompanied with a coincident 

beta absorption in plastic scintillator, 

gamma interaction scenarios 2 and 3 

generate coincident pulses which are 

most likely responsible for Compton 

background in the two-dimensional 

beta/gamma coincidence spectrum.  
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Scenario # 

• From three scintillators, seven possible 
signal-pulse shapes or types could be 
generated. 
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Scenario # 3 

Scenario # 5 

Scenario # 1, 2 and 4 

β/γ 

CS 

DIGITAL PULSE SHAPE ANALYSIS Scintillator Decay Time (nsec) 

Plastic (BC-400) 1.2 

BGO 300 

CsI (Tl) 1000 



• RX1200, User-Programmable Digital Spectrometer  

• 12-bit Resolution 

• 200 MHz Sampling Rate 

• Dual-parameter Digital Pulse Shape Discrimination 

• Digital Triangular Filters 
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F1: Triangular Filter (80 ns) 

 F2: Triangular Filter (400 ns) 

F3: Triangular Filter (6000 ns) 

Responses of three triangular filters 

DIGITAL PULSE SHAPE ANALYSIS 

RX1200, Avicenna Instruments 

A, B and C Summation regions 9 



•Scatter of Fast and Slow Component Ratios from 137Cs (shielded against beta) 
 

•Seven marked regions correspond to seven pulse shapes, indicating how gamma-
rays interact with the three layers of phoswich detector 

1: BC400 
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DIGITAL PULSE SHAPE ANALYSIS 

2: CsI 
3: BC400+CsI 

4: BGO 5: BC400+BGO 

6: BGO+CsI 

7: Unknown 
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MEASUREMENT RESULTS 

A. SUPPRESSION FACTOR 
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The suppression factor was defined as: 

Where:  
Cu(E) is the number of counts in energy E of 
the unsuppressed spectrum and  Cs(E) is the 
number of counts in energy E of the 
suppressed spectrum. 

 

Suppressed and unsuppressed gamma-ray spectra from 137Cs. 
The whole digital pulse processing was implemented in a 
FPGA device. 

Suppression factor as a function of photon energy. 

The Compton suppression mechanism is more 
efficient (50%-60%) in low-energy part of the 
Compton continuum (<200 keV) than the 
higher energies close to the Compton edge 
(~477 keV).  

1 2 
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B. 135Xe measurements 

MEASUREMENT RESULTS 

3 ml of stable and enriched (>99%) 134Xe were 
irradiated in the thermal column of the TRIGA 
reactor for two hours 
(∅ =  7x1010  n.cm−2.sec−1).  
 
135Xe was produced and injected into the gas 
cell.  

Scatter of Fast and Slow Component Ratios from 135Xe. 

2-D beta-gamma coincidence energy histograms from 135Xe. Gamma energy spectra in CsI(Tl) (coincidence with BC-400) from 135Xe.  
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C. 133Xe measurements 

MEASUREMENT RESULTS 

3 ml of stable and enriched (>99%) 132Xe were 
irradiated in the thermal column of the TRIGA 
reactor for two hours (∅ =  7x1010  n.cm−2.sec−1).  
 
133Xe was produced and injected into the gas cell.  

Scatter of Fast and Slow Component Ratios from 133Xe. 

2-D beta-gamma coincidence energy histograms from 133Xe. 

Gated with 30 keV X-ray 

Gated with 81 keV γ-ray 

Projected Gamma Spectrum 

Projected Beta Spectrum 

β 

γ 



Future Works 

Characterizing the detector with 131mXe  
 
Developing full digital pulse processing in FPGA  
 
 Building and characterizing a Well-type phoswich design 
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Questions? 
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