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 Np4+ , NpO2
+ or  NpO2

2+ 
 

 For a reliable co-extraction of Np, the 
oxidation state must be known and 
maintained. 

 
 
 
 
 

0.01

0.1

1

10

100

0 2 4 6 8 10

Ne
ptu

niu
m 

Dis
rtib

uti
on

 Ra
tio

Nitric Acid Concentration (M)

Np(V)

Np(IV)

Np(VI)



 NpO2
+ + 3/2 H+ + ½ NO3

- ↔ NpO2
2+ + ½ 

HNO2 + H2O 
 (Siddall and Dukes 1959) 

 
 Nitrous acid should favor NpV 

 
 Yet Siddall and Dukes found Np oxidation 

upon small additions of HNO2? 
 

 They proposed an undefined “activated state”! 



 
 HNO2 + HNO3 ↔ N2O4 + H2O ↔ •NO2 + 

•NO2 
 

 Tochiyama et al. (1995) proposed that •NO2 
was the real oxidizing agent. 

 Where does HNO2 come from? 
 

 HNO3 -ww→ •O + HNO2 
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 Preparation of NpV is 
difficult in 4 M HNO3 

 Initially got 80% NpV 

 



 Initially 94% NpVI in 4M 
HNO3  



 HNO3 oxidizes NpV to NpVI 

 HNO2 reduces NpVI to NpV 

 Irradiation produces an amount of HNO2 that 
depends on [HNO3] 

 The oxidation of NpV by HNO3 also produces 
HNO2 

 No matter what you start with, an equilibrium will 
be achieved as first reported by Siddall and 
Dukes: 
 

 NpO2
+ + 3/2 H+ + ½ NO3

- ↔ NpO2
2+ + ½ HNO2 

+ H2O 
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Initially 75% NpVI- long- 
term equilibrium for 6 mM Np  
in 4 M HNO3 



 H2O -\/\/\→ •OH + e-
aq + H• + H2O2 + 

H3O+ + H2 
 
 

 e-
(aq) + O2 → O2

-          k = 1.9 x 1010 M-1 s-1 
 

 e-
(aq) + H+ →•H  k = 2.3 x 1010 M-1 s-1 

 
 •H + O2 → •HO2  k = 1.2 x 1010 M-1 s-1 

 

 Oxygen is scavenged in the first few kilogray, chemistry 
switches to reducing. 
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 HNO2 grows in during 
the oxidizing phase- 
but it is not reacting 
with NpVI 
 

 As soon as O2 is gone 
HNO2 begins to react 
with NpVI 

 
 An artifact of our 

experiment? The 
process is aerated? 



 N2O is used in radiation chemistry to 
encourage oxidizing conditions… 

 N2O + H → OH + N2 k = 2.1 x 106 M-1 s-
1 

 N2O + e- + H2O → N2 + OH- + •OH  
   

    k = 9.1 x 109 M-1 s-1 

 
 

 N2O sparging should also remove the initial 
dissolved O2 
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 Reduction of NpVI continues 
after the end of the 
irradiation, expected if its 
HNO2. 
 

 The rate of reduction a bit 
higher? Loss of oxidizing 
radicals? 
 

 HNO2 declines after 
irradiation, lost to NpVI 
reduction. 



 Rad-produced HNO2 reduces NpVI in the long 
run. No evidence of NpIV. 

 
 This effect is limited by scavenging of HNO2 by 

rad-produced oxidizing agents, and their 
oxidation of NpV. 
 

 At low doses, prior to production of sufficient 
HNO2, oxidation of NpV predominates. This may 
also explain Siddall and Dukes observations at 
very low [HNO2] where it is the radical source. 
 
 



 NO2 sparging of samples to see if this radical 
is capable of oxidizing NpV. 
 

 Irradiations in the presence of the organic 
phase (NpIV?). 
 

 Ultimately, a radiation chemical model is 
desirable. 
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