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Fuel Data Needs
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Fuel (UO,) Data Needs

* Fuel properties of prime interest:

— Densification and swelling

— Formation of HBS at the pellet rim
— Thermal conductivity of pellet materials

— Fission gas behavior in steady and transient conditions,
Including precipitation, localization, and release

— Creep rate and mechanical properties

* These are indispensable inputs to fuel performance and design
codes
‘ Safe, reliable, and economical use of LWR Fuel

=2l
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Specific Project Objectives (Examples)

* Thermal conductivity as a function of burn-up; the effect of
grain size and fuel variants (including MOX);

» Determination of density and changes in porosity;
* Fuel melting point and specific heat measurements,
 Evolution of fuel microstructure with burn-up

— Onset of HBS formation and its dependence on grain
size, additives, temperature and/or hydrostatic restraint;

— Implications of HBS formation on FGR and fuel
fragmentation; and

 Evolution of the mechanical properties including thermal
creep measurements; the mechanisms involved in visco-
plastic deformation behavior of the pellet material



Disc Irradiation Approach
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Disc Irradiation Concept

* Nearly isothermal irradiation

— Fuel discs sandwiched
between two Mo disc

e With or without restrain

— Each rodlet containing
several fuel discs

e Several rodlets irradiated in
HBWR in IFAs equipped with

— ND, neutron flux
detector

—TF, thermocouples
— PF, pressure transducer
— EF, elongation detector

— GF, gas sweep with
external y-spectroscopy

© 2012 Electric Power Research Institute, Inc. All rights reserved.

QOutlet thermocouples
Fuel disk thermocouple

Inlet gas line
Bellows for
Neutron detector axial constraint
Outlet gas line Fuel disk
" Constraint

Fuel
extensometer

~ @

Fuel rod

Differential transformer
for pressure / FGR measurements

Inlet thermocouples

Goolant turbine flowmeter

Calibration valve
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Experimental design

e Mo disc thickness and gap
from the cladding aimed at
discharge temperatures of
approximately 500 and 700°C

e Mo rings around fuel discs
provided restraint and
prevented fuel discs turning
Into unusable fragments for
PIE purposes

© 2012 Electric Power Research Institute, Inc. All rights reserved.
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Disc Irradiation Concept
(cont’d)

* A wide range of burn-up up >
100 GWd/t achieved in
HBWR

* “As-irradiated” fuel samples
iIdeal for advance PIE and
properties measurements
20

— Minimum sample size S 18

— Free of strong gradients S 1s |

- ' L %12 E
in burn-up or irradiation £, |

08

temperature 06 [

« Applied successfully 04 |

00 L—

— Five irradiations since
1989

© 2012 Electric Power Research Institute, Inc. All rights reserved. 10
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Collaborative Disc Irradiation Programs

|FA# Time period | Fuel Temperature | Max burn-up
(Program) (°C) (MWd/kg)

IFA-569 1989-1991 600-800 77
(NFIR)

IFA-563 1991-1996 900-1200-1400 36
(HPG)

IFA-601 1993-1996 | 500-700-900-1200 103
(HBRP)

IFA-649 2001-2006 550-700 103
(NFIR)

IFA-655 2001-2006 500-700 125
(HPG)

11



Gas flow system: IFA-655

To off gas system

~+=— Gas flow path

Flow meter

Cold trap bank

Rods 7,8,9,10 UO,
11,12 MOX

Y Detector
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Gas flow analysis

Assuming Booth model from short-lived fission products for spherical
grains:

ISOtOfpiC release Recoil release to
rate from vy- birth rate
spectrometry \ /

R S D R

B recoil
Isotopic birth rate /

from fission yield ’ \
: Square root of precursor

calculations
Surface area to enhancement factor / decay

volume ratio * constant
square root of
diffusion coefficient

In start-up diffusivity Through-life analysis
analysis S/V fixed D fixed
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Typical Results
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Laser Flash Method

VYacuum
System

.

Shielding

U> Detector

Signal Conditioner

Helium Neon & Amplifier
LASER .
— Trigger \ [
! : Furnace Scope & Computer for
and Data Storage
Neodymium .
| @ Glass ipeclmen
LASER emperature
Control
H T
%%}x X‘@
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IFA-601& IFA-569 PIE Data Compared--TD

400°C before recovery

I T I T T T T T T T T
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)
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€ 15}y A NFIR
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- ‘-.A a
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0 20 A0 &0 80 100

Burnup (MW d/kgU)
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DSC method of CIO determination

—— furnace

insulation

measuring head

control thermocouple

heating element

[« & » & & & & » &

sample carrier

radiation shields

| — protective tube

vacuum-tight closure

— Yacuum

3- purge gas outlet

© 2012 Electric Power Research Institute, Inc. All rights reserved.

* Differential scanning
calorimetry (DSC) adapted
for remote operation in hot
cell

* Two identical crucibles
under the same external
heating or cooling conditions

— Inflowing high purity Ar in a
furnace

 Procedure adapted for
‘'sample’ or ‘reference
standard’ in one crucible,
while other is empty
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C, data: comparable to MATPRO within  10%

Specific heat (Jke/K)
4001

350

300

L1y

250
MATPRO

200

| 500 i 1 i | i 1 i 1 i | i | i | i 1
200 () (i) &00 1,000 1,200 1,400 1,600
Temperature (°C)

« MATPRO does not account for irradiation and doping

ELECTRIC POWER
RESEARCH INSTITUTE

=2l

© 2012 Electric Power Research Institute, Inc. All rights reserved. 18



IFA-601& IFA-569 PIE Data Compared--Density

e Dotted line is based on
swelling data

98% _ _
s — Converting to density
96% F—— - neglects fission products
Tt % inthe lattice; hence
~ 94% e B expected to be higher
& T
= e
S 92% e
2 90% |
2 h
8 88w 1 il
86% Commercial ~ reeeess Lazsmann's
T * NFIR-UDZ (850°C) 2 NFIR (U, Gd)02 (560°C) i—
B HERP- U0Z [450°C) O HERP - {L,Gd)02 (450°C)
849%]| & HeRP-UOZ{7O0C) HERF - {U,Gd)02 (F00°C)
1 HERP - 1002 {950°C] HERP - {L,Gd )02 (350°C)
8204 ®  HERP- U0Z [1200°C] ©  HERP - {I,Gd)02 (1200°C)
0 20 40 60 80 100

Local Burnup (MWd/kgU)
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High Burn-up Structure (HBS)
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High Burn-up Structure (HBS)

 Highly porous;
« Amorphous structure;

 Fission gas trapped in small sub-
micron bubbles

* Grains sub-divided

* Tendency to swell and crack
upon heating

» A high concentration of over-
pressurized gas bubbles

P ELECTRIC POWER
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IFA-601

* One of the objective: Threshold temperature for HBS formation
» Design: Fuel discs irradiated to 4 different burn-ups at 4 different

temperatures
» Extensive PIE performed: Key results described in previous
publications
Rod # | Fuel Temperature Max burn-up
(°C) (MW(d/kg U)
1 600 55, 70, 85, 100
2 800 55, 70, 85, 100
3 1000 55, 70, 85, 100
4 1250 55, 70, 85, 100

© 2012 Electric Power Research Institute, Inc. All rights reserve
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Onset of HBS Formation as a Function of Burn-up
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Thermal Diffusivity (TD)
Recovery
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TD-Recovery Phenomenon

0.02 |
D —-TD .
fully—anneald as—received
% Recovery = Y x 100
- . g TDas—received
5 0.015 |
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temperature  ('C)
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Irradiated UO,: Up and down ramps showed
different DSC response

U6 Sample Specific Heat (J'kg/H)

EL:]
Up-ramp data
E1 | Down-ramp data
/!
40 ;'I
0 [ el
e
3] "\I m
M f" Jl\
Dl *‘a
i WUJW \*
e, Bl s ’-j"h. “|
T |
f e 4
//—/
@ =
140 i ] | I
o 200 400 G500 200 1,000 1,200 1,400 1,600

e Exothermic heat release with annealing
* The perturbations not seen in U0
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Results

144
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 Inverse thermal
conductivity (resistivity)
of “as-irradiated”
samples:

— Is higher than that of “fully-
annealed” samples

— Does not extrapolated to
zero burn-up (unirradiated)
samples

e Points to a non-linear

behavior as burn-up
approaches to zero
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DISCUSSION (1)

eq. 1 k=(p C,).TD
eq. 2 k=1 ky
eq. 3 ky=(@+Db.T+c.p)?!

e At a microscopic level:
— Radiation damage (point defects, dislocations etc.)

— Tiny solid and gas clusters of fission products (small
enough In size to be phonon scattering centers)

also impact the conductivity directly [additional terms in Eq.
(3) are needed]

p EEEEEEEEEEEEE
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DISCUSSION (2)

* These microscopic phonon scattering centers grow
with temperature anneals and improve the
conductivity.

—Bubbles 5to 7 nm = ~ 90 nm in annealing
associated with TD measurement cycles

e Avallable data also indicate

— Recovery at lower temperature is due to radiation
damage annealing but it is due fission atom
annealing at higher temperatures

— Kinetics of radiation damage annealing is rapid out-
of-pile but may be significant in-pile (dynamic defect
balance)



Microstructure Studies
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Fuel Microstructure and Gas Localization
Studies

 Evolution with burn-up and T(t) history “seen” by the
specimen

e Has a direct relevance to:
 Fuel behavior, in general
* FGR, in particular

e Two fuel types examined
— Isothermally irradiated fuel discs (IFA-569)
— LWRirradiated fuel specimens

» Optical microscopy and quantitative SEM and TEM

© 2012 Electric Power Research Institute, Inc. All rights reserved. 31
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As-irradiated Fuel Discs

SEM of U6 at 0.6 mm from disc rim

» Optical = FmE ,,,f—‘“"’f

— With increase in burn-up some

inter-granular porosity e % B &
« SEM ."'}‘_._-'_ - -_-.x_
— Grain boundaries essentially free of S - s -
bubbles o : : ~TEiE 8. HO pm
I 2 - ._ - . F | I
— Sub-micron porosity, mainly intra- o N . ey
) X T1HER
granular, ~ 1 um bubbles
« TEM

— Maximum ~7 nm bubbles and ~ 5
nm precipitates in U2

— Similar observations but with
increasing number densities in U4 —
U6

— U8 had fully developed HBS,
especially near outer rim of the disc

P ELECTRIC POWER
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Post-annealing — Medium Burn-up Fuel
Discs

Intergranular porosity in post-TD Grain boundary interlinkage in post-TD
U4 U4

Carars

P ELECTRIC POWER
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Medium Burn-up Fuel — Time Holds above
1200°C

o [T7-> 4 hrs (Similar {Q) =——

« IT8> very short duration =
* IT9—> 100 hrs

50nm

CI:EI ELECTRIC POWER
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Highest Burn-up Disc Fuel

As-irradiated

« When heated as unrestrained sample: e

— Tended to fragment/disperse when
heated above 800°C

— Fragment size ranged from several
hundred microns to a few microns

» Sub-micron bubbles in HBS expanding
and fracturing the surrounding fuel

F

=2l
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TEM of LWR Fuel at ~ 60 GWd/t Burn-up

As-irradiated; mid-radius Ramped to 23 kW/m; Max temp. 1130°C

ELECTRIC POWER
EPPI2I | wesearcr msmure
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Fuel Fragmentation/Dispersal
Studies



Detailed HBS Characterization

Grain sizedependence Fission gas content

gas in bubbles (% ofthe total measured)
/ o
< surface HBS area %
o mid-height
*Standard *
mgrain disc *
]
[
“w o
@ Large
B grain disc *
] *
]
1 0.8 0.6 0.4 0.2 0
1R . w1
o—4
T 1 1 I I
local burnup (GWd/t Hwm)
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f Burn-up

10N O

Funct
response to temperature transients

pressurized gas bubblesin HBS
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* Fuel fragmentation is linked to the
presence of HBS
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MOX Fuel
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Fabrication of MOX variants

MOX-1

Dissolution of PuO, in HNO3

'

Solution of UO,(NO3),

Denitration

| > Polymer Addition

!

Atomisation

Gelation in NH40H

'

Washing and Dryin

g

!

Calcination

stable; 96% TD

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Cut into discs 8.2 mm dia; 1 mm thick

uo,

v

Forced Sieving

Y

MOX-2

pUOz

v

Forced Sieving

41

Blending |«

MOX-1 by sol-gel process; MOX-2 by direct blending of powders
Pu content in MOX-1is 14.13 wt% and that in MOX-2 was 13.84 wt%.

Pellets fabricated by standard pressing, sintering, and grinding steps; Thermally

CPE' RESCARCH N
S
RESEARCH INSTITUTE



Microstructure

Pu-rich particle

(U,Pu) O5 grain

Pu-etched

« MOX-1 grain size 10.9 ym.
« MOX-2 grain size: 5.2 um (in U-rich phase) and 8.3 ym (in Pu-rich
phase)

» Average size of Pu-rich agglomerates in MOX-2 is ~ 40 um

ELECTRIC POWER
RESEARCH INSTITUTE
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Homogeneous and Heterogeneous MOX
Microstructure

 Since currently manufactured commercial MOX fuel is either MIMAS
(micronized masterblend) or SBR (short binderless route):

— Our experimental results do not directly apply to commercial MOX
fuels but provide critical insights on MOX fuel performance

 Our results represent limiting MOX behavior and underscore the
Importance of initial microstructure, the plutonium agglomerate size,
Inter-agglomerate spacing, and fuel matrix plutonium content

« MOX-1 and MOX-2 are, in general, more homogeneous and less
homogeneous, respectively, than the commercial MOX fuel. They were
especially fabricated to:

— Achieve the goals of this investigation

— Continue further investigations through advanced fuel PIEs (NFIR)
and further irradiations (HRP)
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Fuel volume change, %

Results: Densification, swelling, and FGR in IFA-
655
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Key observations on MOX

* Diffusion coefficient (tentatively) and FGR trend:
UO, fuel < MOX-1 < MOX-2

 Increased S/V at higher burnups in rods with gas lines, together with

the corresponding increases in rod internal pressure in sealed rods

» These observations can be attributed to a combination of

— More concentrated fissions and early formation of HBS in the large

Pu oxide clusters where the locally high burnup occurs

— Enhanced formation of open porosity within these clusters, due to

interlinkage of HBS pores, or enhanced thermal or athermal diffusive
release from small HBS grains

C‘:El ELECTRIC POWER
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Future R&D Needs
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Fuel Mechanical Properties and Creep

* Visco-plastic deformation behavior of fuel and the
knowledge of concurrent mechanisms involved are the
main needs PCMI behavior

» Out-of Pile approaches in various stages of development
— Micro-indentation and acoustic methods

 Actual in-pile fuel mechanical behavior will need to be
modeled:

— Interaction of fractured ceramic (the pellet) in a metallic
tube (the cladding) after strong PCMI has been
established

« Underlying key question will be:

— Relative significance of thermal and irradiation creep of
the pellet



Some Other Examples

e Threshold for fuel fragmentation/dispersal
— Regulatory focus in RIA and LOCA events

— Can one eliminate or delay HBS formation through fuel
additives and grain size controls

* In-pile recovery kinetics

— Role of radiation damage and fission gas bubble
nucleation

— Any concerns due to stored heat
* Fission gas localization and release

— Large uncertainties in prediction yet important in fuel rod
design margins
* Fuel mechanical behavior and interaction with cladding

 MD Modeling

© 2012 Electric Power Research Institute, Inc. All rights reserved. 48



Conclusions
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Conclusions

 For fuel pellet behavior in a fuel rod temperature and microstructure are
the co-pilots. They are highly dependent on one-another.

* The main approaches to licensing and burn-up extension issues in
LWR fuel are:

— PIE of as-irradiated fuel discs;
— In-pile testing and measurements on instrumented fuel rodlets;
— Experience-base from in-LWR fuel rod performance.

* Fuel (UO,) R&D is often time consuming and expensive, with severely
limited number of hot cell lab who can perform it. It is best take an
International collaborative approach.

 Ultimate future goal: Full predictive capabilities validated to high burn-
up UO, fuel system.
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Together...Shaping the Future of Electricity
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