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Applications to: 
 Zry manufacturers 
 In-reactor clad dimensional predictions 
 Reliability of spent fuel during dry storage & transportation 
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Objective 

Dry Storage at Site 

Eventual Disposal 
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hcp metals 
effects of c/a-ratio and alloying 

low ideal high 

Ti / Zr Mg Zn 

Ti  

Zr 

Ti-Al-V 

Zr-Nb 

   X-Ray Pole Figures
Basal, Prism, Pyramidal

CODF

   Lower-Bound
Power-Law Creep

          Slip Mode
Basal, Prism, Pyramidal

Bulk Polycrystalline
         Behavior

in-service prediction formability 

Spent fuel reliability Started as an NSF grant research in 1983 



N
U
C
L
E

A
R M

S
L
A
I

R
E

A T

NCSU

4 

Zircaloys 
hcp structure with limited slip systems    texture ⇒

Texture Effects 
 Radiation Growth (Fuel Rods and Channels) 
 Hydride Orientation 
 Corrosion and Stress Corrosion Cracking 
 Deformation and Creep 

--- anisotropy & formability 

•Circumferential 

•random 

•radial 

•usual 
hcp unit cell 

Sn Fe Cr Ni 

Zry-2 1.2 – 1.7 0.07 – 0.20 0.05 – 0.15 0.03 – 0.08 

Zry-4 1.2 – 1.7 0.18 – 0.24 0.07 – 0.13 --- 

Zry-Nb 1.2 – 1.7 0.18 – 0.24 0.07 – 0.13 1.0 (Nb) 
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MATERIALS 
TUBING       PLATE     TUBE-SHELL 

TEXTURE ODF - PLASTICITY MODEL 

MECHANICAL ANISOTROPY 

FORMABILITY 

BIAXIAL CREEP 

SCC 

Lower-Bound 
    & Power-Law 
Upper-Bound 

Bishop-Hill 
Rigid-Plastic 

IN-REACTOR PERFORMANCE 
Cladding, Grids and Channels 

TUBE & GRID FABRICATION 
 from TREX and Sheet 
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ZIRCALOY - 4 Sheet 
0.46 mm [~ 18 mils] thick 

Tensile Tests 
Gridded Specimens 

[31.75mm x 6.35mm] 

ZIRCALOY - 2 TREX 
100 mm OD x 10 mm wall 

Impression Tests 
[6.35mm x 6.35mm x 6.35mm] 

CLADDING 
ZIRCALOY -2 & ZIRCALOY -4 

[standard BWR & PWR] 
Biaxial Creep 
[Creep Locus] 

ZIRCALOY MATERIALS & TEST METHODS 

furnace 

laser 

LVDT 
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CWSR vs Rx Zircaloy 

CWSR 

Rx 

weak hoop 

strong hoop 

θ 

θ 

z 

z 

D~10µm ε θ

ε z 1:1

= { 3.2 for CWSR
0.4 for Rx

Hoop stronger at RT 
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Texture using OIM 
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01100002

CWSR Zircaloy cladding 
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CODF-Slip Model 
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CODF-Slip Model 
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Burst Tests          Creep Tests 
 Sustained gas pressurization to 15 ksi 
 Temperatures from ambient to 600 C 
 Post burst specimen profile using  

Laser Extensometer 
 Time to rupture, uniform hoop strain 
 Approximate steady-state strain-rate 
 Larson-Miller Parameter 
 Hoop Strain-Rate vs Stress & 

Temperature 

 Biaxial creep tests using internally 
pressurized tubing 

 Stress state (σθ/σz) varying from 0 
(uniaxial) to 2 (internal pressure) 

 Monitor hoop and axial strains 
using Laser and LVDT 
extensometers vs time 

 Hoop and axial strain-rate vs stress 
 Primary and steady-state creep 
 Transitions In creep mechanisms 
 Strain transients due to stress 

changes 

Experimental Techniques 

Biaxial Creep – anisotropy 
Transitions in Creep Mechanisms 
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Biaxial Creep 
εθ, εz vs σθ, σz 

σθ vs σz at constant W 
W=  ⇐  Creep Locus   ε σ ε σθ θ + z z

Biaxial Creep 

α =1 

W=energy dissipation rate 
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Creep Loci 

CWSR 

CWSR 

Recrystallized 

σθ vs σz at  
constant W 

___ Basal slip  
            Predictions 
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Zircaloys – Expt vs CODF-slip Model 
z

r

θ

cold-work  
texture 

& 
grain-shape anisotropy 

CWSR 

Rx 

ε θ

ε z 1:1

= { 3.2 for CWSR
0.4 for Rx

 
   

          
             

         

        
            

    

  

   
     

    

(o) - CWSR Data 

CODF-Creep 
Prism Slip Model 

CODF-Creep 
+ GBS Model 

σz/σg 

σθ/σg low c/a ratio - prism slip  
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Zircaloy-4 
(CWSR) 

Hoop 
(2:1) 

5
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Temperature & Stress Variations 
of Secondary Creep-Rate 
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Qc = 268 ± 7 kJ/mole 

Zircaloy-4 
(2:1) loading 
σ=2x10-3E 

Zircaloy-4 
(2:1) loading 

T=658K (385C) 

( )55 )105( σεθ
−∝ xSinh

Qc=QD and n~5  
Signifies that creep is climb-controlled during 

glide-climb process of dislocations such as is noted 
in pure metals and Class-II alloys. 

[note that these are at relatively high stresses (σ>10-3E)]  
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Model Equation

Weighted time   ε  t

εθ  %

s
.

( )
sinh/ε σs H kT nkT

D Eb
Ae B

0

= −∆

Stress and Temperature Dependence 
(internal pressurization – 2:1 tests) 
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Transients in Creep due 
to Stress Changes 
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Model Equations for Predicting In-Reactor Creep 
Thermal Creep 

Steady-State Creep-Rate:    

Creep Strain:  , where     

Effect of Stress Changes:      

Generalized Stress & Strain - Rate 

 

 

Radiation Creep & Growth 
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EFFECTS OF NEUTRON IRRADIATION 

Deformed Irradiated 
Recrystallized Zircaloy-2 

(c+a) type Dislocations 

Basal + Pyramidal slip in addition 
to prismatic 

Deformation and Creep Anisotropy 
Decreases 

 

The creep anisotropy of CWSR 
Zircaloy unaffected by irradiation 

PIE experiments on Oconee  

CODF-CREEP Model 

Rx - Decreased Anisotropy 
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Transitions in Creep Mechanisms 

21 

• Most of the hoop data of internally pressurized tubing are at relatively high stresses  
• Transitions in creep mechanisms are expected as lower stresses are encountered due 

mainly to GBS and diffusional creep (Nabarro-Herring and/or Coble) 

Zircaloy-4 tubing 
Uniaxial tests (500C) 

Wang, PhD thesis, NCSU 
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Nb-Modified Zircaloy-4 Tubing 
Hoop Creep (2:1) 

breakdownlawPower
Egion

nDislocatio
Egion

nDislocatio
Egion

Egion

 
3-104/:IV Re

creep controlled climb 
3-104/3-101:III Re

creep controlled glide 
3-101/4-106:II Re

Creep Coble
4-106/4-103 :I Re

−
×>

×<<×

×<<×

×<<×

σ

σ

σ

σ

•Zircaloy-4 +1%Nb (similar to Zirlo) 

Alloy class (Class-I) behavior due to locking of dislocations by solute 
atoms (known as microcreep with n~3) –  

at higher stresses dislocations break-away from locking leading to 
climb controlled creep similar to pure metals (or class-M alloys) 

Y. Zhou, B. Devarajan and K.L. Murty, Nucl. Eng. Design, 228 (2004) 3-13 
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Nb-Modified Zircaloy-4 sheet 
Uniaxial Creep 

Dangers of blind extrapolation to low stresses 

Pure metal  
and class-II alloys 

GBS 

RD 

TD 

J. Ravi, Wiratmo and K.L. Murty, Nucl. Eng. Design, 
156 (1995) pp. 359 – 371 
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Creep Strain Calculation 
(inert dry storage conditions) 

Assume constant 60MPa 
(σ~6x10-4E) 

εtotal=εdiffusion+εGBS+εdislocation 
Time Hardening – easier 

Strain Hardening – more involved but more realistic 
 

Model predictions 
No experimental data 
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Creep Strain Calculations 
Creep Strain Predictions based on Strain-Hardening Rule 

(stress= 60 MPa)

0
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Total

strain vs. time
on Nb-modified Zircaloy-4 
for spent fuel dry storagePrediction 

10-years storage 
ε~ 0.3 % 

(close to ANL-PNNL results, 2002) 
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Creep Strain Calculations 

Only thermal creep considered 
Need more concrete data on transitional 

creep mechanisms in Zircaloys  
(as per recent study on Ti alloy – next slide) 

Effect of radiation – expected to make the 
material harder and thus these predictions are 
considered conservative 

Effects of oxidation, hydriding and crud 
– very limited amount of work to-date 

 Ideal is to perform tests on UNF from 
cooling pools – small unihoop type 
suitable in a hot cell 

 

  

•Creep Strain Predictions based on time-hardening Rule  
•(stress=60MPa)  

•0.00E+00 
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•Total 
•Coble 
•Glide 

 •strain vs. time 
•on Nb-modified Zircaloy-4  
•for spent fuel dry storage 

•Prediction 
•10-years storage 

ε ~ 0.3 % 

Maximum strain 
0.675% 

Further research for proper characterization of transitions 
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Ti3Al2.5V – Transitional Creep Mechanisms 

Region III 
Jogged Screw Dislocation 

Climb of Edge Dislocations  

Region II 
GB sliding / superplastic creep  

Region I 
Dislocation Climb at 

slip-band – GB intersections  

Do these transitions occur in other 
materials such as Zr and under 
different loading conditions? – new 
NSF grant (9/15/2010 – 2014) 

Srikant et al, Acta Mat, 2008 
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Effect of Hydrogen on Creep of Zircaloys 

28 

Y. Jung et al, J. Nucl Mater, 2011 

• Depends on atomic hydrogen vs hydride 
• Presence of oxide layer 
• CWSR vs Rx 
• Alloy composition 
• Effect of neutron irradiation (?) 

Kishore, 
J. Nucl. Mater, 2009 
Increase by a factor  

of 2.5 in 160 ppm 
 

Zr-2.5Nb 
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Possible study on UNF 
using uni-hoop creep tests 

29 

Equivalence between ring 
tensile and burst tests 

Seok, Marple, Song, Gollapudi, Charit and Murty 
Nucl Eng Design, 2011 
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Transitional Creep Mechanisms 

Class-M 

Class-A 

Zircaloy-4 

Zry-Nb 

n=1 

n=3 

n=7 

3
o

2
m

c
kTb2

cW
β

=σ

* Class-A Alloys * 
Dislocation Break-away at high stresses 

Murty (1973) 
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Transitional Creep Mechanisms 
Application to Dry-Storage of SNF 

Creep Strain Predictions based on time-hardening Rule  
(stress=60MPa)  
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Total 
Coble 
Glide 

strain vs. time 
on Nb-modified Zircaloy-4  
for spent fuel dry storage 

Maximum strain : 0.675% 

Nucl. Eng. Design, 228 (2004) 3-13 
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Dislocation Microstructures 
Influence of Alloying / Stress-State 

Biaxial Loading vs Uniaxial Loading 

cp-Ti vs Ti3Al2.5V 

Nov. 00 

need further investigation 
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Transients in Creep - Irradiated Zry-2 

Franklin Model 

NCSU Model 



N
U
C
L
E

A
R M

S
L
A
I

R
E

A T

NCSU

Ti3Al2.5V 

Dorn Plot 

Q = QIII= 325±20 kJ/mol 

Acta Mat. 56 (2008) 2406-2419 
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The Region I: Correlation with 
Coble Creep Predictions 

Theoretical Coble creep predictions 

δσ
λ

ε BSB D
kT

l Ω
= 4

50


Spingarn and Nix (1979) 

Spingarn-Nix model, λ = 250±50 nm 

Gollapudi, Bhosle, Charit and Murty, Phil. Mag. (2008) 

Deformation microstructure 

Slip bands  
or twins? 
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Slip Bands - not Twins 

2 nm2 nm

2 nm2 nm 900 nm 

HRTEM studies indicated the nature of these bands to 
be slip bands rather than twins 

2 nm2 nm

Grain 

2 nm2 nm

Band 

[ ]3121The grain orientation 

The band orientation [0001] 

Phil Mag., 88:9 (2008) 1357-1367 



N
U
C
L
E

A
R M

S
L
A
I

R
E

A T

NCSU

38 

ZIRCALOY PROPERTIES 
Objectives & Goals 

Quantify Texture Using CODF 

Develop Crystal Plasticity & Creep Models to 
Predict Anisotropic Creep, Deformation & 

Formability of Zircaloy Cladding, Sheet & TREX 

Selection of Optimum Textures for tube, 
Grid & Channel Fabrication 

Applications 

Prediction of In-Service Dimensional Changes of 
Cladding [PWR & BWR] & Channels [BWR] 

Reliability of spent fuel during dry storage and 
transportation 
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