### Мемо



| No.:     | M-6914-00-04, Rev. 1                                                                               |
|----------|----------------------------------------------------------------------------------------------------|
| To:      | Project File                                                                                       |
| From:    | Robert D. Varrin, Jr., Dominion Engineering, Inc.                                                  |
| Date:    | March 18, 2011                                                                                     |
| Subject: | Independent Evaluation of Costs of Major Capital Items for High Temperature Gas<br>Cooled Reactors |

#### 1 Background / Introduction

The Idaho National Laboratory (INL) is conducting both technical and economic evaluations in support of an anticipated design and construction of a high temperature gas cooled reactor (HTGR). The first plant that is being planned is known as the Next Generation Nuclear Plant (NGNP). Scheduled to be operational by about 2021, the NGNP will serve as a key demonstration of advanced gas cooled reactor technologies as well as help establish energy production costs prior to commercialization of this type of reactor. The NGNP is expected to have a thermal output of about 550 to 600 MWth and produce electricity as well as supply process heat (nominally high temperature gas) in support of chemical or petrochemical operations. High temperature steam supply to industrial processes is also a potential role for HTGRs that could be demonstrated by the NGNP.

Over the past 15 years, a number of potential US and international gas-cooled reactor vendors, the INL, the DOE and numerous international organizations have evaluated the economics of HTGRs. Overall, the inherent efficiency of producing electricity with a HTGR is expected to be higher than that achieved by conventional light water reactors. This is because HTGRs may operate with a reactor outlet temperature (ROT) of up to 950°C. LWRs typically operate at about 320°C. The Carnot efficiency of the HTGR would therefore be expected to be greater for the HTGR assuming the ultimate heat sink temperature is similar in the case of a conventional Rankine steam cycle.

As part of the overall development of the NGNP in specific and the HTGR technology as a whole, the INL is refining previous economic projections for the cost of designing, licensing and deploying HTGRs. As part of this work, INL asked Dominion Engineering, Inc. (DEI) to conduct an independent assessment of cost data (direct costs) for major capital equipment and infrastructure items.

The specific goal was to use cost estimates that had been generated by General Atomics (GA) in 2007 (Reference 1) and extrapolate them to various HTGR or NGNP deployment or design/operating condition scenarios. The GA estimates were developed for both the NGNP and a future multi-unit site with 4 reactors (so called "4-pack"). The NGNP costs were obviously for a "first of a kind" (FOAK) design and build, while the 4-pack costs are understood to represent an "nth of a kind" or NOAK deployment. GA did not provide estimates for a single unit NOAK nor the FOAK of a single unit commercial plant after NGNP.

It is understood that the GA cost estimates also assumed that NGNP would be designed with an ROT of 950°C while the reference 4-pack was based on earlier GA studies of a Modular Helium Reactor (MHR) operating with an ROT of 850°C (Reference 2).

The 11 most capital intensive HTGR items represent about 80% of the capital cost of the plant. These 11 items are summarized in Table 1. As such, extrapolating costs for only these items is a reasonable way of developing capital cost trends for the entire plant. The items of interest to INL as far as extrapolating the GA estimates were:

- ROT (750, 800, 850, 900 and 950°C)
- Use of 2-1/4Cr 1Mo, Mod P91 and SA508 Cl 3 as pressure vessel materials (reactor vessel, power conversion vessels, intermediate heat exchanger vessel, etc.)
- Rankine versus Brayton cycles for production of electricity
- Costs for NGNP, FOAK and NOAK plants
- 350 versus 600 MWth reactor output
- 4 pack versus single unit sites

Overall, the above variables correspond to more than 250 cases. Although costs for all cases were generated, the summary tables contained in this report were filtered in the sense that cases that were technically unrealistic were not reported (e.g., use of SA508 Cl3 for the reactor vessel with a reactor inlet temperature over 450°C).

Table 2 summarizes some of the HTGR design and operating variables for various proposed vendor designs. These designs were considered in determining which cases were technically unreasonable.

### Table 1. Highest Direct Cost Items for NGNP/HTGRs

| Reference<br>Item | Description                       |  |
|-------------------|-----------------------------------|--|
| 1                 | Turbine Generator                 |  |
| 2                 | Reactor Initial Core              |  |
| 3                 | Reactor Building                  |  |
| 4                 | Reactor Vessel                    |  |
| 5                 | Power Conversion Vessel           |  |
| 6                 | Core Refueling Equipment          |  |
| 7                 | Heat Rejection System             |  |
| 8                 | Reactor Metallic Internals        |  |
| 9                 | Intermediate Heat Exchanger (IHX) |  |
| 10                | Reactor Graphite Internals        |  |
| 11                | Reactor Cavity Cooling System     |  |

|                     |          | GA PCDR 2007   | AREVA '881        | GA 545        | GA 545        |
|---------------------|----------|----------------|-------------------|---------------|---------------|
| Reactor Type        |          | Prismatic      | Prismatic         | NGNP          | H2MHR         |
| Power               | MWth     | 600            | 565               | 600           | 600           |
| N                   |          | 1              | 1                 | 1             | 4             |
| Total Power         | MWth     | 600            | 565               | 600           | 2400          |
| RCS Pressure        | Mpa      | 7              | 5                 | 7             | 7             |
| ROT                 | °C       | 950            | 900               | 950           | 950           |
| RIT                 | °C       | 490            | 500               | 490           | 490           |
| PCS Type            | Туре     | Brayton        | Rankine           | Brayton       | Brayton       |
| Output              | Mwe      | 300            | 241               | 300           | 300           |
| Direct/Indirect     | Туре     | Direct         | Direct (SGs)      | Direct        | Direct        |
| PCS Vessel          | Matl     | 2-1/4 or P91   | P91               | P91           | P91           |
| PCS Weight          | tons     |                |                   | 1100          | 1100          |
| ІНХ                 | MWth     | 10% Power      | 1 compact         | 65            |               |
| IHX Cost            | Direct   | Not specified  | Not specified     | \$ 15.300.000 | \$ 10.815.000 |
| (per plant)         | Indirect | Not specified  | Not specified     | \$ 16,900,000 | \$ 4,669,250  |
| RV Cost (per)       | Direct   | Not specified  | Not specified     | \$ 38,321,147 | \$ 38,321,147 |
|                     | Indirect | Not specified  | Not specified     | \$ 94,885,000 | \$ 65,317,429 |
| RV Material         | Matl     | 2-1/4 Cr- 1 Mo | SA508 Cl3         | P91           | P91           |
| RV Weight           | tons     | 891            | 231111 27.5 111 0 | 891           | 891           |
| Head Weight         | tons     | 484            |                   | 484           | 484           |
| Cross Vessel Weight | tons     | 16             |                   | 16            | 16            |
| Vessel Supports     | Matl     | P91            | Not Specified     | P91           | P91           |
| RV Internal         | Matl     | Not specified  | 800H              | 800H          | 800H          |
| Composite CEAS      | Use      | No             | Yes               | No            | No            |

# Table 2. Summary of HTGR and NGNP Reference Conditions and Design Parameters used in Evaluation of Direct Costs

### 2 Summary of Results

Tables 3 through 6 summarize the results of the evaluation. Both 350 MWth and 600 MWth cases are provided. These are further divided as FOAK 1-pack, NOAK 4-pack and NOAK 1-pack. Example reference costs for a 600 MWth NGNP are shown in the 600 MWth tables. The results are then shown as a function of ROT.

NOAK 1-Pack

|       |      |      |       | M-0 |
|-------|------|------|-------|-----|
| ult   | ts   |      |       |     |
| 46.8  | 19.7 | 12.7 | 833.5 |     |
| 42.9  | 19.7 | 12.7 | 774.7 |     |
| 20.9  | 18.5 | 12.7 | 663.4 |     |
| 19.9  | 17.4 | 12.7 | 629.4 |     |
| 19.0  | 16.4 | 12.7 | 598.1 |     |
| 135.1 | 56.0 | 50.8 | 677.7 |     |
| 123.8 | 56.0 | 50.8 | 630.0 |     |

Table 3. 600 MWth Brayton Cycle Results

90.0

127.1 124.1 93.2 57.0 40.3 77.5

122.1

119.6

117.2

361.0

90.0 67.4 57.0

85.4

81.1

355.9

85.1 57.0

64.0 57.0

60.7 57.0

266.7 162.0 40.3 64.5

38.8

*40.3* 30.7

*161.0* 185.3

40.3

*40.3* 34.5

*161.0* 222.3

145.0

133.4 81.0 124.6 113.5

122.7 72.9

112.9 65.6

103.9 59.0

580.0 360.0

533.6 324.0 353.8 353.8 325.6 243.9 162.0

950

006

850

800

750

950

006

|              |                               |                   |                                                                 |       |        |          |        |        | Brayto | on Dire | ct Cycl | e  |
|--------------|-------------------------------|-------------------|-----------------------------------------------------------------|-------|--------|----------|--------|--------|--------|---------|---------|----|
|              |                               |                   | NGNP 1-Pack<br>600 MWt GA<br>Vertical PCS<br>Brayton<br>(7 MPa) |       | 55     | )AK 1-Pa | с      |        |        | NON     | AK 4-Pa | ъ  |
| Ref.<br>Item | Description                   | Scale<br>Approach | 950                                                             | 750   | 800    | 850      | 006    | 950    | 750    | 800     | 850     | •  |
| 1            | PCS Turbo Machinery           | Exp               | 0.995                                                           | 268.7 | 292.1  | 317.5    | 345.1  | 375.1  | 415.5  | 451.6   | 490.9   | 2  |
| 2            | Reactor Initial Core          | Linear            | 134.0                                                           | 102.6 | 108.0  | 113.7    | 119.7  | 126.0  | 236.2  | 262.4   | 291.6   | ŝ  |
| ε            | Reactor Building              | Exp               | 254.0                                                           | 186.9 | 198.8  | 211.5    | 225.0  | 239.4  | 333.0  | 339.8   | 346.7   | ŝ  |
| 4            | Reactor Vessel                | Detail            | 206.2                                                           | 95.4  | 100.5  | 106.0    | 133.8  | 146.4  | 233.6  | 245.8   | 258.9   | 3  |
| 5            | Power Conversion Vessel       | Detail            | 154.8                                                           | 71.5  | 75.4   | 79.5     | 100.4  | 109.9  | 174.5  | 183.7   | 193.6   | 2  |
| 9            | Core Refueling Equipment      | Equiv             | 98.7                                                            | 92.8  | 92.8   | 92.8     | 92.8   | 92.8   | 162.0  | 162.0   | 162.0   | 1  |
| 7            | Heat Rejection System         | Exp               | 45.0                                                            | 42.3  | 42.3   | 42.3     | 42.3   | 42.3   | 161.0  | 161.0   | 161.0   | 1  |
| 8            | Reactor Metallic Internals    | Detail            | 0.96                                                            | 36.0  | 40.5   | 45.6     | 76.0   | 91.4   | 89.3   | 100.1   | 112.3   | 1  |
| 6            | ХНІ                           | Detail            | 27.6                                                            | 22.1  | 23.2   | 24.4     | 50.4   | 55.1   | 55.9   | 58.6    | 61.5    | 1  |
| 10           | Reactor Graphite Internals    | Exp               | 34.0                                                            | 26.5  | 28.2   | 30.0     | 32.0   | 32.0   | 46.5   | 49.5    | 52.6    | Ξ, |
| 11           | Reactor Cavity Cooling System | Exp               | 31.0                                                            | 29.1  | 29.1   | 29.1     | 29.1   | 29.1   | 50.8   | 50.8    | 50.8    | 5  |
|              |                               | Total per Unit    | 1530.3                                                          | 974.1 | 1031.0 | 1092.4   | 1246.5 | 1339.4 | 489.6  | 516.4   | 545.5   | 9  |

|              |                               |                   |                                                                       |       |       |         |        | Ran    | kine Di | rect C | /cle (7 | MPa)  |       |       |       |          |       |       |
|--------------|-------------------------------|-------------------|-----------------------------------------------------------------------|-------|-------|---------|--------|--------|---------|--------|---------|-------|-------|-------|-------|----------|-------|-------|
|              |                               |                   | NGNP 1-Pack<br>565 MWt Areva<br>NGNP Direct<br>Steam Cycle<br>(5 MPa) |       | FO    | AK 1-Pa | ×      |        |         | NC     | AK 4-Pa | З     |       |       | NC    | )AK 1-Pa | ск    |       |
| Ref.<br>Item | Description                   | Scale<br>Approach | 006                                                                   | 750   | 800   | 850     | 006    | 950    | 750     | 800    | 850     | 006   | 950   | 750   | 800   | 850      | 006   | 950   |
| 1            | Steam Turbine Generator Plant | Exp               | ţu                                                                    | 161.6 | 175.7 | 190.9   | 207.6  | 225.6  | 481.4   | 523.3  | 568.8   | 618.2 | 672.0 | 120.4 | 130.8 | 142.2    | 154.6 | 168.0 |
| 2            | Reactor Initial Core          | Linear            | elq nc                                                                | 102.6 | 108.0 | 113.7   | 119.7  | 126.0  | 236.2   | 262.4  | 291.6   | 324.0 | 360.0 | 59.0  | 65.6  | 72.9     | 81.0  | 0.06  |
| 3            | Reactor Building              | Exp               | versio                                                                | 186.9 | 198.8 | 211.5   | 225.0  | 239.4  | 333.0   | 339.8  | 346.7   | 353.8 | 361.0 | 117.2 | 119.6 | 122.1    | 124.6 | 127.1 |
| 4            | Reactor Vessel                | Detail            | noD 19                                                                | 93.8  | 98.8  | 104.1   | 131.4  | 143.8  | 229.6   | 241.6  | 254.5   | 320.0 | 349.7 | 7.97  | 83.9  | 88.4     | 111.5 | 122.0 |
| 5            | Power Conversion Vessel       | Detail            | ewoq                                                                  | NA    | NA    | NA      | NA     | NA     | NA      | NA     | NA      | NA    | NA    | NA    | NA    | NA       | NA    | NA    |
| 9            | Core Refueling Equipment      | Equiv             | t plus                                                                | 92.8  | 92.8  | 92.8    | 92.8   | 92.8   | 162.0   | 162.0  | 162.0   | 162.0 | 162.0 | 57.0  | 57.0  | 57.0     | 57.0  | 57.0  |
| 7            | Heat Rejection System         | Exp               | nel9 i                                                                | 42.3  | 42.3  | 42.3    | 42.3   | 42.3   | 161.0   | 161.0  | 161.0   | 161.0 | 161.0 | 40.3  | 40.3  | 40.3     | 40.3  | 40.3  |
| 8            | Reactor Metallic Internals    | Detail            | r Hea                                                                 | 36.0  | 40.5  | 45.6    | 76.0   | 91.4   | 89.3    | 100.1  | 112.3   | 185.3 | 222.3 | 30.7  | 34.5  | 38.8     | 64.5  | 77.5  |
| 6            | ХНІ                           | Detail            | eəloul                                                                | 22.1  | 23.2  | 24.4    | 50.4   | 55.1   | 55.9    | 58.6   | 61.5    | 123.8 | 135.1 | 19.0  | 19.9  | 20.9     | 42.9  | 46.8  |
| 10           | Reactor Graphite Internals    | Exp               | N 10 %                                                                | 26.5  | 28.2  | 30.0    | 32.0   | 32.0   | 46.5    | 49.5   | 52.6    | 56.0  | 56.0  | 16.4  | 17.4  | 18.5     | 19.7  | 19.7  |
| 11           | Reactor Cavity Cooling System | Exp               | 608                                                                   | 29.1  | 29.1  | 29.1    | 29.1   | 29.1   | 50.8    | 50.8   | 50.8    | 50.8  | 50.8  | 12.7  | 12.7  | 12.7     | 12.7  | 12.7  |
|              |                               | Total per Unit    | 744.0                                                                 | 793.8 | 837.5 | 884.5   | 1006.2 | 1077.4 | 461.4   | 487.3  | 515.4   | 588.7 | 632.5 | 552.4 | 581.8 | 613.9    | 708.7 | 761.2 |
|              |                               |                   |                                                                       |       |       |         |        |        |         |        |         |       |       |       |       |          |       |       |

Table 4. 600 MWth Rankine Cycle Results

NOAK 1-Pack

NOAK 4-Pack

FOAK 1-Pack

NGNP 1-Pack Rough Estimate

Approach Scale

Exp

PCS Turbo Machinery Reactor Initial Core Reactor Building Reactor Vessel

-

De scription

Ref. Item

Linear

Detail Detail Equiv

Exp

e 4 ഹ 9 ~ ∞

2

**Brayton Direct Cycle** 

| 50 | MV  | Vth   | ı B   | ray   | y <b>to</b> i | n C   | Cyc   | le ] | Res   | sult | ts   |      |        |
|----|-----|-------|-------|-------|---------------|-------|-------|------|-------|------|------|------|--------|
|    | 950 | 107.8 | 58.2  | 97.1  | 85.7          | 63.9  | 42.8  | 21.2 | 54.8  | 33.1 | 11.3 | 9.7  | 585.5  |
|    | 006 | 99.2  | 52.4  | 95.1  | 78.4          | 58.4  | 42.8  | 21.2 | 45.6  | 30.3 | 11.3 | 9.7  | 544.3  |
|    | 850 | 91.2  | 47.2  | 93.2  | 62.2          | 46.3  | 42.8  | 21.2 | 27.4  | 14.8 | 10.6 | 9.7  | 466.5  |
|    | 800 | 83.9  | 42.5  | 91.4  | 59.0          | 43.9  | 42.8  | 21.2 | 24.4  | 14.1 | 10.0 | 9.7  | 442.7  |
|    | 750 | 77.2  | 38.2  | 89.5  | 56.0          | 41.7  | 42.8  | 21.2 | 21.7  | 13.4 | 9.4  | 9.7  | 420.8  |
|    | 950 | 431.2 | 232.9 | 275.7 | 245.8         | 182.9 | 121.5 | 84.8 | 157.0 | 95.4 | 32.0 | 38.8 | 474.5  |
|    | 006 | 396.7 | 209.6 | 270.2 | 224.9         | 167.3 | 121.5 | 84.8 | 130.9 | 87.5 | 32.0 | 38.8 | 441.1  |
|    | 850 | 365.0 | 188.7 | 264.8 | 178.9         | 132.8 | 121.5 | 84.8 | 79.3  | 43.5 | 30.1 | 38.8 | 382.0  |
|    | 800 | 335.8 | 169.8 | 259.5 | 169.9         | 126.1 | 121.5 | 84.8 | 70.7  | 41.4 | 28.3 | 38.8 | 361.6  |
|    | 750 | 308.9 | 152.8 | 254.3 | 161.5         | 119.8 | 121.5 | 84.8 | 63.1  | 39.5 | 26.6 | 38.8 | 342.9  |
|    | 950 | 278.8 | 81.5  | 182.8 | 101.1         | 75.4  | 9.69  | 32.3 | 64.6  | 38.9 | 25.6 | 22.2 | 972.8  |
|    | 006 | 256.5 | 77.4  | 171.9 | 92.4          | 68.9  | 69.69 | 32.3 | 53.7  | 35.6 | 25.6 | 22.2 | 906.0  |
|    | 850 | 236.0 | 73.6  | 161.6 | 73.2          | 54.5  | 69.69 | 32.3 | 32.2  | 17.3 | 24.0 | 22.2 | 796.4  |
|    | 800 | 217.1 | 6.69  | 151.9 | 69.4          | 51.7  | 69.69 | 32.3 | 28.6  | 16.4 | 22.6 | 22.2 | 751.8  |
|    | 750 | 199.8 | 66.4  | 142.8 | 65.9          | 49.1  | 69.69 | 32.3 | 25.4  | 15.6 | 21.2 | 22.2 | 710.3  |
|    | 950 | 296.6 | 86.7  | 194.0 | 142.3         | 106.2 | 74.0  | 34.4 | 91.4  | 54.8 | 34.0 | 23.6 | 1138.2 |

Total per Unit

Exp Exp

Reactor Cavity Cooling System Reactor Graphite Internals

11 10

Detail Detail

Reactor Metallic Internals

XHI

б

Exp

Heat Rejection System

Core Refueling Equipment

Power Conversion Vessel

Table 5. 3

|              |                               |                   |             |       |       |          |       | Ran   | kine Di | rect C | /cle (7 | MPa)  |       |       |        |          |       |       |
|--------------|-------------------------------|-------------------|-------------|-------|-------|----------|-------|-------|---------|--------|---------|-------|-------|-------|--------|----------|-------|-------|
|              |                               |                   | NGNP 1-Pack |       | 9     | AK 1-Pac | ×     |       |         | NC     | АК 4-Ра | ъ     |       |       | 0<br>N | AK 1-Pac | ×     |       |
| Ref.<br>Item | Description                   | Scale<br>Approach |             | 750   | 800   | 850      | 006   | 950   | 750     | 800    | 850     | 006   | 950   | 750   | 800    | 850      | 006   | 950   |
| 1            | Steam Turbine Generator Plant | Exp               |             | 123.4 | 134.2 | 145.8    | 158.5 | 172.3 | 367.7   | 399.7  | 434.4   | 472.2 | 513.2 | 91.9  | 6.66   | 108.6    | 118.0 | 128.3 |
| 2            | Reactor Initial Core          | Linear            |             | 66.4  | 6.69  | 73.6     | 77.4  | 81.5  | 152.8   | 169.8  | 188.7   | 209.6 | 232.9 | 38.2  | 42.5   | 47.2     | 52.4  | 58.2  |
| 3            | Reactor Building              | Exp               | səte        | 142.8 | 151.9 | 161.6    | 171.9 | 182.8 | 254.3   | 259.5  | 264.8   | 270.2 | 275.7 | 89.5  | 91.4   | 93.2     | 95.1  | 97.1  |
| 4            | Reactor Vessel                | Detail            | mite∃       | 65.1  | 68.5  | 72.3     | 91.2  | 99.8  | 159.5   | 167.8  | 176.7   | 222.1 | 242.8 | 55.3  | 58.2   | 61.4     | 77.4  | 84.6  |
| 5            | Power Conversion Vessel       | Detail            | tso⊃        | NA    | NA    | NA       | NA    | NA    | NA      | NA     | NA      | NA    | NA    | NA    | NA     | NA       | NA    | NA    |
| 9            | Core Refueling Equipment      | Equiv             | IGNP        | 69.6  | 69.6  | 69.69    | 69.69 | 69.6  | 121.5   | 121.5  | 121.5   | 121.5 | 121.5 | 42.8  | 42.8   | 42.8     | 42.8  | 42.8  |
| 7            | Heat Rejection System         | Exp               | 1 J.W.I.    | 32.3  | 32.3  | 32.3     | 32.3  | 32.3  | 84.8    | 84.8   | 84.8    | 84.8  | 84.8  | 21.2  | 21.2   | 21.2     | 21.2  | 21.2  |
| 8            | Reactor Metallic Internals    | Detail            | N 05E       | 25.4  | 28.6  | 32.2     | 53.7  | 64.6  | 63.1    | 70.7   | 79.3    | 130.9 | 157.0 | 21.7  | 24.4   | 27.4     | 45.6  | 54.8  |
| 6            | ХНІ                           | Detail            | οN          | 15.6  | 16.4  | 17.3     | 35.6  | 38.9  | 39.5    | 41.4   | 43.5    | 87.5  | 95.4  | 13.4  | 14.1   | 14.8     | 30.3  | 33.1  |
| 10           | Reactor Graphite Internals    | Exp               |             | 21.2  | 22.6  | 24.0     | 25.6  | 25.6  | 26.6    | 28.3   | 30.1    | 32.0  | 32.0  | 9.4   | 10.0   | 10.6     | 11.3  | 11.3  |
| 11           | Reactor Cavity Cooling System | Exp               |             | 22.2  | 22.2  | 22.2     | 22.2  | 22.2  | 38.8    | 38.8   | 38.8    | 38.8  | 38.8  | 9.7   | 9.7    | 9.7      | 9.7   | 9.7   |
|              |                               | Total per Unit    |             | 584.1 | 616.2 | 650.8    | 738.0 | 789.6 | 327.2   | 345.6  | 365.6   | 417.4 | 448.5 | 393.1 | 414.1  | 436.9    | 503.8 | 541.1 |

Table 6. 350 MWth Rankine Cycle Results

The cells in the above tables shown in grey were not evaluated (there is no 350 MWth NGNP reference cost data for the Rankine Cycle, nor is there a PCS in the Rankine cycles). Items in italics were not scaled by temperature because it was not clear that the direct costs would be drastically affected by changes in ROT (although a simple cost-factor exponential relationship could be used if detailed information on the sizes of sub-components was known).

### 3 Summary Description of Evaluation

The evaluation and extrapolation of the cost estimates provided in 2007 by GA was performed as follows:

- The GA cost data was summarized for NGNP at ROT of 950°C and a 4-pack design based on MHR at an ROT of 850°C. No change was made to account for 2010 dollars versus 2007 (so the results should be interpreted as 2007 dollar equivalent).
- Each of the 11 items was then grouped by scaling methodologies: (1) exponential scaling laws (similar to those used in petrochemical industry exponentials ranged from 0.32 to almost 1.00 with an average of about 0.6), (2) linear scaling by reactor size, (3) equivalent cost regardless of selected parameters such as core size (e.g. refueling equipment), (4) more rigorous or "detailed" evaluations based on first principles and material property behavior as function of temperature, or (5) no scaling due to uncertainties in savings that might be achieved by changes such as reducing temperature.
- A limited amount of literature data on gas cooled reactor costs such as that available from the GEN-IV program (G4 ECONS Models) was considered.
- For the detailed evaluations, spreadsheets were developed that used the following inputs:
  - Cost of SA508 pressure vessel steel from the LWR industry.
  - The percent of the component that would be subjected to elevated temperature design (ETD) rules (hence cost of the component would be higher relative to lower temperature components).
  - Relative costs of candidate materials of construction.
  - $\circ$  Relative fabrication costs for various materials of construction.
  - A Code-allowable stress for temperatures below ETD limits (lower strength materials require thicker sections).

- A general placeholder for an activation energy for temperature dependent degradation mechanisms such as general corrosion – this can be set to zero by the user (currently set to 18 kcal/mol).
- A user defined breakout of direct costs in terms of raw materials, forming and fabrication, final fabrication, pre-service inspection and transportation.
- Any components subject to creep were cost-adjusted using a correlation between allowable stress at 100,000 hours creep rupture life and increased in size to lower stresses as needed as a function of temperature. This is a somewhat suspect method of addressing costs associated with creep, as increasing the size of components is not necessarily the best approach.
- Cost scaling from the GA estimates was based on a top-down approach as opposed to a detailed bottom-up method.
- RD&D, design, construction, commissioning, operations, fueling and decommissioning costs were not factored into the evaluation.
- Field fabrication versus shop fabrication was only considered to the extent a transportation factor was used in discriminating between the 600 MWth and 350 MWth RV and PCS vessel costs.
- Rankine turbine generator costs were developed independently using publically available data on supercritical fossil plants.
- NOAK versus FOAK costs were based on published "learning factors' used in the LWR industry 0.94 for equipment and 0.90 for materials (e.g. each doubling of site size reduces direct cost by 16%).
- Contingencies were not explicitly included in the cost extrapolations this was largely because it was not clear if sub-supplier contingencies had already been included in the GA costs.
- No credit for modularization or factory production was taken, although this might be expected to actually increase the costs until a production of some number of units was completed (on the order of 20).
- The cost estimates in the "detailed evaluations" did consider a heavy burden for nuclear grade components versus industrial grade.

- Rankine cycle steam turbine scaling factors were taken from the literature (0.5).
- Gas turbine scaling factors were taken from the literature (0.48 to 0.55).
- Reactor graphite internals costs were not scaled upward in increasing ROT from 900°C to 950°C (800H assumed in both cases). They were lowered below 900°C.
- Reactor Inlet Temperatures (RITs) were assumed to vary as follows (based on overall trends in various vendors' proposed NGNP designs):

| ROT (°C) | RIT (°C) |
|----------|----------|
| 750      | 350      |
| 800      | 375      |
| 850      | 400      |
| 900      | 425      |
| 950      | 450      |

#### 4 References

- 1. "NGNP and Commercial H2-MHR Cost Information", PC-000545, prepared by General Atomics for the Battelle Energy Alliance, LLC, July 2007 (Proprietary).
- 2. "NGNP and Hydrogen Production Preconceptual Design Studies Report", General Atomics Report 911107, July 2007.

#### 435.77 12/03/2007 Rev. 03

#### NEXT GENERATION NUCLEAR PLANT PROJECT INFORMATION INPUT SHEET

Page 1 of 1

|                                                                                    | 1. Document Information                                                          |                           |                                                                                        |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------|
| Document ID: M-6914-00-0                                                           | 4 Revision ID: 1                                                                 | Project Number: 238       | 43                                                                                     |
| Document Title/Description                                                         | Independent Evaluation of Costs of Major Capital                                 | Sub-Project No.:          |                                                                                        |
| Document InterDescription.                                                         | Items for High Temperature Gas Cooled Reactors                                   | Date of Record: 3/18      | 8/11                                                                                   |
| Document Author/Creator:                                                           | Dominion Engineering, Inc                                                        | OR<br>Data Danasa         |                                                                                        |
| Document Owner:                                                                    |                                                                                  | _Date Range:              |                                                                                        |
| Originating Organization:                                                          | INL                                                                              | From:                     | То:                                                                                    |
|                                                                                    | 2. Records Management Requirements                                               | S                         |                                                                                        |
| Category: 🛛 General Rec<br>If QA, Record, QA Classificati                          | ord                                                                              | Document                  |                                                                                        |
| Uniform Filing Code: 8201                                                          | Disposition Authority: A17-31-a-1 Retenti                                        | on Period:<br>on Period:  | antlement or<br>f facility,<br>, system, or<br>r when<br>d or obsolete,<br>is earlier. |
| Keywords:<br>Medium: Mard Conv                                                     |                                                                                  | )ther                     |                                                                                        |
| Total Number of Pages (inclu                                                       | ding transmittal sheet): 12 File Index Code                                      | : 8402.2                  |                                                                                        |
| Folder: <u>Engineering</u><br>Type: <u>Communiication</u><br>Special Instructions: | S                                                                                |                           |                                                                                        |
|                                                                                    | 3 Signatures                                                                     |                           |                                                                                        |
| Phillip Mills<br>Print/Type Sender Name                                            | Sender Signature                                                                 | 085841<br>Sender S Number | 2/13/12<br>Date                                                                        |
|                                                                                    | QA RECORD VALIDATOR:                                                             |                           |                                                                                        |
| Print/Type Authenticator Na                                                        | me Authenticator Signature A                                                     | uthenticator S Number     | Date                                                                                   |
| Tammy Albrethsen                                                                   | - ACCEPTANCE/RECEIPT:                                                            | <u> </u>                  | 2/13/12                                                                                |
| Print/Type Receiver Name                                                           | e Receiver Signature                                                             | Receiver S Number         | Date                                                                                   |
|                                                                                    | 4. Records Processing Information<br>For Document Control and Records Management | Use Only                  |                                                                                        |
| Image I Vault Page:                                                                | Import: Index:                                                                   | QC:                       |                                                                                        |

**NOTE:** This transmittal to be used in accordance with PLN-1485. Instructions for completion can be found on Form 435.77A.